Jounny WEI-BING LIN

A Hands-On Introduction to Using
Python in the Atmospheric and
Oceanic Sciences

HTTP://WWW.JOHNNY-LIN.COM/PYINTRO

2012

© 2012 Johnny Wei-Bing Lin.
Some rights reserved. Printed version: ISBN 978-1-300-07616-2. PDF ver-
sions: No ISBNs are assigned.

This work is licensed under the Creative Commons Attribution-Noncom-
mercial-Share Alike 3.0 United States License (CC BY-NC-SA). To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
us or send a letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA.

Who would not want to pay money for this book?: if you do not need
a black-and-white paper copy of the book, a color PDF copy with functional
hyperlinks, have limited funds, or are interested in such a small portion of
the book that it makes no sense to buy the whole thing. The book’s web site
(http://www.johnny-lin.com/pyintro) has available, for free, PDFs of every
chapter as separate files.

Who would want to pay money for this book?: if you want a black-
and-white paper copy of the book, a color PDF copy with functional hy-
perlinks, or you want to help support the author financially. You can buy
a black-and-white paper copy of the book at http://www.johnny-lin.com/
pyintro/buypaper.shtml and a hyperlink-enabled color PDF copy of the book
at http://www.johnny-lin.com/pyintro/buypdf.shtml.

A special appeal to instructors: Instruction at for-profit institutions, as
a commercial use, is not covered under the terms of the CC BY-NC-SA, and
so instructors at those institutions should not make copies of the book for
students beyond copying permitted under Fair Use. Instruction at not-for-
profit institutions is not a commercial use, so instructors may legally make
copies of this book for the students in their classes, under the terms of the CC
BY-NC-SA, so long as no profit is made through the copy and sale (or Fair
Use is not exceeded). However, most instruction at not-for-profit institutions
still involves payment of tuition: lots of people are getting paid for their
contributions. Please consider also paying the author of this book something
for his contribution.

Regardless of whether or not you paid money for your copy of the book,
you are free to use any and all parts of the book under the terms of the CC
BY-NC-SA.

Chapter 9

Visualization: Basic Line and
Contour Plots

With so much of the analysis of AOS problems requiring graphing or visu-
alization of some sort, no scientist’s toolkit is complete without a robust vi-
sualization suite. Because Python is an open-source programming language,
you have not just one visualization suite but several to choose from. For
AOS graphics, NCAR’s PyNGL, UV-CDAT’s Visualization Control System
(ves), and matplotlib are three powerful packages that can handle most AOS
visualization tasks. While each has its own strengths and weaknesses, in this
chapter we will focus on matplotlib and its 2-D graphics routines to create
line and contour plots.!

(By the way, just a heads-up that in this chapter, the plots and tables
will usually be in figures that float to wherever on the page works best for
optimizing the page. Plots and tables may not immediately follow where
they are first mentioned.)

9.1 What is matplotlib?

Matplotlib, as its name suggests, emulates the Matlab plotting suite: com-
mands look like Matlab commands. It has a function-centric interface ade-
quate for the needs of most users (especially first-time users), but the entire
suite is object-based, so power users have fine-grained control over the de-

'"PyNGL implements the graphing resources of the NCAR Command Language (NCL)
into Python (NCL has more “high-level” functions, but PyNGL can draw everything NCL
can). Vcs is the original plotting module for CDAT and UV-CDAT. Its default settings are
not always pretty, but they make use of the masks and metadata attached to masked variables,
so plotting is fast. Section 10.2 tells you where to go to obtain these packages.

143

Do the online
pyplot
tutorial. It’s
very good!

Plot makes
plots and
show
visualizes
them.

9.2. BASIC LINE PLOTS

tails of their plots. (In this chapter, I won’t talk much about the object-based
interface.) Matplotlib’s default plots also look uncommonly beautiful, which
was the intention of the package’s primary author, John Hunter. Finally, mat-
plotlib has a broad user community from many disciplines, so a lot of peo-
ple contribute to it and templates/examples exist for many different kinds of
plots.

The submodule pyplot defines the functional interface for matplotlib. Py-
plot is often imported by:

import matplotlib.pyplot as plt

Unless otherwise stated, you may assume in the examples in this chapter that
the above import has been done prior to any matplotlib calls being run.

The online pyplot tutorial is very good. In this chapter, we’ll cover
only a few of the topics found in there; I encourage you to go through it
all on your own: http://matplotlib.sourceforge.net/users/pyplot_tutorial.html.
The online gallery of examples is also very illuminating: http://matplotlib.
sourceforge.net/gallery.html.

9.2 Basic line plots

Line plots are created by the pyplot plot function. Once created, matplotlib
keeps track of what plot is the “current” plot. Subsequent commands (e.g.,
to make a label) are applied to the current plot.

The show function visualizes (i.e., displays) the plot to screen. If you
have more than one figure, call show after all plots are defined to visualize
all the plots at once. Consider the following example:

Example 54 (Your first line plot):
Type in this example into a file and run it in the Python interpreter:

1 |import matplotlib.pyplot as plt

: |plt.plot([1, 2, 3, 471, [1, 2.1, 1.8, 4.3])
3 |plt.axis([0, 8, -2, 71)

4+ |plt.xlabel(’Automatic Range’)

s |plt.ylabel(’Made-up Numbers’)

s |plt.show()

What did you get? Based on what’s output, what do you think each of the
commands do?

144

9.2. BASIC LINE PLOTS

Made-up Numbers

Automatic Range

Figure 9.1: Graph created by the code in Example 54.

Solution and discussion: You should have obtained a plot like the one
shown in Figure 9.1.

Line 2 of the code creates the plot, and the two list input arguments pro-
vide the x- and y-values, respectively. (I could have used NumPy arrays
instead of lists as inputs.) The axis function in line 3 gives the range for the
x- and y-axes, with the first two elements of the input parameter list giving
the lower and upper bounds of the x-axis and the last two elements giving the
lower and upper bounds of the y-axis. Lines 4 and 5 label the x- and y-axes,
respectively, and the show function displays the graph on the screen.

9.2.1 Controlling line and marker formatting

To control line and marker features, you can use the appropriate keyword I
input parameters with the plot function, e.g.: linestyle ¢

markers, etc.

plt.plot([1, 2, 3, 41, [1, 2.1, 1.8, 4.3],
linestyle="--", linewidth=5.0,
marker="%*’, markersize=20.0,
markeredgewidth=2.0,
markerfacecolor="w’)

145

Line and
marker
property
listings.

Annotation
and font size.

Using EETEX
to annotate
plots.

9.2. BASIC LINE PLOTS

Note how linestyle, marker, and markerfacecolor use special string
codes to specify the line and marker type and formatting. The plot call
above uses a dashed line and a white star for the marker. Linewidth, marker
size, and marker edge width are in points.

Instead of using keyword input parameters, you can also specify line
color and type and marker color and type as a string third argument, e.g.:

plt.plot([1, 2, 3, 4], [1, 2.1, 1.8, 4.3], 'r*--’)

Notice that this third argument contains all the codes to specify line color,
line type, marker color, and marker type. That is to say, all these codes can
be specified in one string. In the above example, the color of the marker and
connecting line is set to red, the marker is set to star, and the linestyle is set
to dashed. (The marker edge color is still the default, black, however.)
Tables 9.1 and 9.2 list some of the basic linestyles and marker codes. For
a more complete list of linestyles, marker codes, and basically all the line
and marker properties that can possibly be set, see the following web pages:

e Linestyles: http://matplotlib.sourceforge.net/api/artist_api.html#matpl
otlib.lines.Line2D.set_linestyle

e Marker symbol types: http://matplotlib.sourceforge.net/api/artist_api
.html#matplotlib.lines.Line2D.set_marker.

e Line and marker properties: http://matplotlib.sourceforge.net/api/artis
t_api.html#matplotlib.lines.Line2D.

Table 9.3 lists some of the color codes available in pyplot.

9.2.2 Annotation and adjusting the font size of labels

We introduced the x1abel and ylabel functions in Example 54 to annotate
the x- and y-axes, respectively. To place a title at the top of the plot, use
the title function, whose basic syntax is the same as x1abel and ylabel.
General annotation uses the text function, whose syntax is:

plt.text(<x-location>, <y-location>, <string to write>)

The x- and y-locations are, by default, in terms of data coordinates. For all
four functions (xlabel, ylabel, title, and text), font size is controlled
by the size keyword input parameter. When set to a floating point value,
size specifies the size of the text in points.

Here’s one cool feature: matplotlib gives you the ability to use I5TEX to
render text! See http://matplotlib.sourceforge.net/users/usetex.html for de-
tails.

146

9.2. BASIC LINE PLOTS

Linestyle String Code
Solid line -
Single dashed line --
Single dashed-dot line -.
Dotted line :
7 .
Pad L7
e
P .
7 .

import numpy as N
import matplotlib.pyplot as plt
plt.figure(l, figsize=(3,1))

plt.plot(N.arange(4), N.arange(4), '-’, \
N.arange(4)+1, N.arange(4), '--’,
N.arange(4)+2, N.arange(4), ’-.’, \
N.arange(4)+3, N.arange(4), ':’)

plt.gca().axes.get_xaxis().set_visible(False)
plt.gca().axes.get_yaxis().set_visible(False)
plt.savefig(’pyplot_linestyles.png’, dpi=300)

N T - ¥ e O N

S

Table 9.1: Some linestyle codes in pyplot, a high-resolution line plot show-
ing the lines generated by the linestyle codes, and the code to generate the
plot. Lines 8-9 turn-off the x- and y-axis tick marks and labels (see “mat-
plotlib.pyplot.gca,” http://matplotlib.sourceforge.net/api/pyplot_api.html and
http://stackoverflow.com/a/2176591, both accessed August 13, 2012). A full
explanation of these lines is beyond the scope of this book; please see the
sources for more information. Note show is not called since I only want a
file version of the plot.

147

9.2. BASIC LINE PLOTS

Marker String Code

Circle o
Diamond D
Point

Plus

Square S
Star '
Up Triangle "
X X

e ¢ ¢« + H * A X

1 |import numpy as N
> |import matplotlib.pyplot as plt
5 |plt.figure(l, figsize=(3,1))

4+ |plt.plot(C 1, 1, ’0’, \
5 2, 1, ’D’, \
6 3, 1, 7.7, \
7 4, 1, '+7, \
8 5, 1, ’s’, \
9 6, 1, *’, \
10 7,1, °77, \
1 8, 1, 'x’)

2 |plt.axis([®, 9, 0, 2])

13 |plt.gca().axes.get_xaxis().set_visible(False)
11 |plt.gca().axes.get_yaxis().set_visible(False)
15 |plt.savefig(’pyplot_markers.png’, dpi=300)

Table 9.2: Some marker codes in pyplot, a high-resolution line plot showing
the markers generated by the marker codes, and the code to generate the plot.
Lines 12—13 turn-off the x- and y-axis tick marks and labels. See Table 9.1
for sources and more information.

148

9.2. BASIC LINE PLOTS

Color String Code
Black k
Blue b
Green g
Red r
White W

Table 9.3: Some color codes in pyplot. See http://matplotlib.sourceforge.
net/api/colors_api.html for a full list of the built-in colors codes as well as

for ways to access other colors.

149

9.2. BASIC LINE PLOTS

Example 55 (Annotation and font size):
Consider this code:

plt.plot([1, 2, 3, 4], [1, 2.1,
plt.xlabel (’Automatic Range’)
plt.ylabel (’'Made-up Numbers’)

plt.show()

1.8, 4.31)

plt.title(’Zeroth Plot’, size=36.0)
plt.text(2.5, 2.0, ’My cool label’, size=18.0)

What does this code do?

Solution and discussion: The above code produces a graph like the one
in Figure 9.2. (Note that I resized that graph to fit it nicely on the page, so

the text sizes as shown may not be equal to the values given in size.)

9.2.3 Plotting multiple figures and curves

Multiple
independent

rent. For instance:

If you have have multiple independent figures (not multiple curves on one
plot), call the figure function before you call plot to label the figure ac-
figures. cordingly. A subsequent call to that figure’s number makes that figure cur-

Example 56 (Line plots of multiple independent figures):

Consider this code:

1 |plt.figure(3)

> |plt.plot([5, 6, 7, 8], [1, 1.8,
3 marker='0")

+ |plt.figure(4)

s |plt.plot([0.1, 0.2, 0.3, 0.4],
6 linestyle="-.")

7 |plt.figure(3)

s |plt.title(’First Plot’)

-0.4, 4.3],

(8,

_2,

5.3, 4.2],

‘What does this code do?

150

9.2. BASIC LINE PLOTS

Zeroth Plot

4.5

4.0r

w w
o w
. ‘

Made-up Numbers
N
w

My cool label

(g
o
T

15}

1'(1.0 1.5 2.0 2.5 3.0 3.5 4.0
Automatic Range

Figure 9.2: Graph created by the code in Example 55.

Solution and discussion: Line 1 creates a figure and gives it the name
“3”. Lines 2-3 (which is a single logical line to the interpreter) makes a line
plot with a circle as the marker to the figure named “3”. Line 4 creates a
figure named “4”, and lines 5—6 make a line plot with a dash-dot linestyle to
that figure. Line 7 makes figure “3” the current plot again, and the final line
adds a title to figure “3”.

To plot multiple curves on a single plot, you can string the set of three Multiole
arguments (x-locations, y-locations, and line/marker properties) for each plot Curves on one
one right after the other. For instance: plot.

Example 57 (Line plot of multiple curves on one figure):
Consider this code:

pltplOt([Ns 11 21 3]’ [11 2’ 3! 4]! ,__O,!
[11 31 5! 9]’ [81 _21 53’ 42]1 ’_D’)

What does it do?

151

Adjusting
plot size.

Save figure.

Resolution
and figure
size in
figure vs.
savefig.

9.2. BASIC LINE PLOTS

Solution and discussion: The first three arguments specify the x- and y-
locations of the first curve, which will be plot using a dashed line and a circle
as the marker. The second three arguments specify the x- and y-locations of
the second curve, which will be plot with a solid line and a diamond as the
marker. Both curves will be on the same figure.

9.2.4 Adjusting the plot size

One easy way of adjusting the plot size is to set the figsize and dpi key-
word input parameters in the figure command.? For instance, this call to
figure:

plt.figure(l, figsize=(3,1), dpi=300)

before the call to the plot command, will make figure “1” three inches wide
and one inch high, with a resolution of 300 dots per inch (dpi). The plot asso-
ciated with Table 9.1 shows a code and plot example that explicitly specifies
the figsize keyword.

9.2.5 Saving figures to a file

To write the plot out to a file, you can use the savefig function. For ex-
ample, to write out the current figure to a PNG file called festplot.png, at
300 dpi, type:

plt.savefig(’testplot.png’, dpi=300)

Here we specify an output resolution using the optional dpi keyword param-
eter; if left out, the matplotlib default resolution will be used. Note that it
is not enough for you to set dpi in your figure command to get an output
file at a specific resolution. The dpi setting in figure will control what res-
olution show displays at while the dpi setting in savefig will control the
output file’s resolution; however, the figsize parameter in figure controls
the figure size for both show and savefig.

You can also save figures to a file using the GUI save button that is part
of the plot window displayed on the screen when you execute the show func-
tion. If you save the plot using the save button, it will save at the default

2http://stackoverﬂow.c:orn/a/638443 (accessed August 13, 2012).

152

9.3. EXERCISE ON BASIC LINE PLOTS

resolution, even if you specify a different resolution in your figure com-
mand; use savefig if you want to write out your file at a specific resolution.

Most of the code for the examples in this section (9.2) are found in the
file example-viz-line.py in course_files/code files.

9.3 Exercise on basic line plots

> Exercise 27 (Line plot of a surface air temperature timeseries):

Read in the monthly mean surface/near-surface air temperature and the
time axis from the provided NCEP/NCAR Reanalysis 1 netCDF dataset.
(The example data is in course_files/datasets in the file airmon.mean.nc.)
Extract a timeseries at one location (any location) on the Earth and plot the
first 100 data points of air temperature vs. time. Annotate appropriately.
Write the plot out to a PNG file.

Solution and discussion: Here’s my solution. The plotting section using
matplotlib starts with line 11:

1 |import Scientific.IO.NetCDF as S
> |import matplotlib.pyplot as plt

4+ |fileobj = S.NetCDFFile(’air.mon.mean.nc’, mode="r’)

s |T_arctic = fileobj.variables[’air’].getValue()[0:100,0,0]
¢ |T_units = fileobj.variables[’air’].units

7 |time = fileobj.variables[’time’].getValue()[0:100]

s |time_units = fileobj.variables[’time’].units

o |fileobj.close()

n |plt.plot(time, T_arctic)
2 |plt.xlabel(’Time [’ + time_units + ']’°)
13 |plt.ylabel(’Temperature [’ + T_units + ’]’)

15 |plt.savefig(’exercise-T-1line.png’)
16 |plt.show()

This code makes a plot like the one in Figure 9.3. Note how string concate-
nation, coupled with each variable’s units metadata values in the netCDF
file, make it easy to annotate the plot with the units.

On some installations, if you call show before savefig, things do not
always write correctly to the file, so in my code I call savefig first, just

153

Call savefig
before show.

Contour plots
using
contour.

The nlevels
parameter.

9.4. BASIC CONTOUR PLOTS

10

Temperature [degC]
oLk
o o

|
w
(=]

—40+

500 10000 20000 30000 40000 50000 60000 70000 8000

Time [hours since 1-1-1 00:00:0.0] +1.706e7

Figure 9.3: Graph created by the solution code to Exercise 27.

to be safe. Of course, if you only want the plot as a file, just use savefig
without calling show.

This code is in the file exercise-viz-line.py in the course_files/code files
subdirectory.

9.4 Basic contour plots

A number of the aspects of plotting (e.g., saving a figure to a file, etc.) work
for contour plots exactly the same as for line plots. In this section, we won’t
rehash those common aspects.

Contour plots are created by matplotlib’s contour function. A basic
contour plot is generated by:

plt.contour(X, Y, Z, nlevels)

where Z is a 2-D array of the values to contour with and X and Y are the x-
and y-locations, respectively, of the Z values (X and Y can be 2-D arrays or 1-
D vectors, the latter if the grid is regular). The optional nlevels parameter
tells how many automatically generated contour levels to make.

The levels keyword controls exactly which levels to draw contours at,

e.g.

plt.contour(X, Y, Z, levels=[-2, -1, 0, 1, 2])

154

9.4. BASIC CONTOUR PLOTS

To make dashed negative contours, set the colors keyword to "k’:
plt.contour(X, Y, Z, colors=’k’)

This setting makes the all the contours black. Matplotlib then renders the
negative contours using the value of an “rc setting” that defaults to dashed.?

While you can do nice default contour maps just by calling the contour
function, a number of contour map functions take a contour map object as
input. Thus, it’s better to save the map to a variable:

mymap = plt.contour(X, Y, Z)

Then, to add contour labels, for instance, use the clabel function (this is a
function that asks for a contour map object as input):

mymap = plt.contour(X, Y, Z)
plt.clabel (mymap, fontsize=12)

The optional keyword fontsize sets the font size (in points).

For filled contours, use the contourf function. The color maps available
for filled contour maps are attributes of the pyplot module attribute cm. You
specify which color map to use via the cmap keyword:

mymap = plt.contourf(X, Y, Z, cmap=plt.cm.RdBu)

A list of predefined color maps is located at http://www.scipy.org/Cookb
ook/Matplotlib/Show_colormaps. To add a color bar that shows the scale of
the plot, make a call to colorbar that uses the filled contour plot object as
input:

plt.colorbar(mymap, orientation="horizontal’,
levels=[-2, -1, 0, 1, 2])

The orientation keyword specifies the orientation of the color bar, as
you’d expect ©. The levels keyword is set to a list that specifies what
levels to label on the color bar.

To make a contour map that’s both lined and filled, make a filled contour
map call then a line contour map call (or vice versa), e.g.:

3The rc setting is contour.negative_linestyle and can be changed in the matplot-
libre file. See http://matplotlib.sourceforge.net/users/customizing.html for details (accessed
August 17, 2012).

155

Making
negative
contours
dashed.

Saving the
contour map
to a variable
SO you can
pass it into
other
formatting
functions.

Making filled
contour maps.

List of

predefined
color maps
and adding
color bars.

9.5. EXERCISE ON BASIC CONTOUR PLOTS

plt.contourf(lonall, latall, T_time®, 10,
cmap=plt.cm.Reds)

plt.contour(lonall, latall, T_time®, 10,
colors="k’)

Both contour maps will be placed on the same figure.

Lastly, atmospheric scientists are often interested in wind barbs: these
are generated with the barbs method of objects generated by the matplotlib
subplot function. See http://matplotlib.sourceforge.net/examples/pylab_e
xamples/barb_demo.html for an example.

Making wind
barbs.

4
¥

. (— www.johnny-lin.com/comic i = O =
J L
Haha! This 3rafa)_ ~

Eat my slides, Jones),

o

ns BY-NC-SA 3.0 license

Before Q&A After Q&A

Licensed under a Creative Comnjo

Johnson & Lin 11-07 (apologies to Breathed)

9.5 Exercise on basic contour plots

> Exercise 28 (Contour plot of surface air temperature):

Read in the monthly mean surface/near-surface air temperature from the
NCEP/NCAR Reanalysis 1 netCDF dataset provided. Also read in the lati-
tude and longitude vectors from the dataset. Extract a single timeslice of the
temperature and plot a contour map. Annotate appropriately. Write the plot
out to a PNG file. Hint: The NumPy function meshgrid can be your friend
(see Example 32), though it may not be necessary.

156

9.5. EXERCISE ON BASIC CONTOUR PLOTS

Solution and discussion: Here’s my solution:

1 |import numpy as N
» |import Scientific.IO.NetCDF as S
3 |import matplotlib.pyplot as plt

s |fileobj S.NetCDFFile(’air.mon.mean.nc’, mode=’r’)
6 |T_time® fileobj.variables[’air’].getValue(Q)[0,:,:]
7 |T_units = fileobj.variables[’air’].units

¢ |lon = fileobj.variables[’lon’].getValue()

o |lon_units = fileobj.variables[’lon’].units

o |lat = fileobj.variables[’lat’].getValue()

i |lat_units = fileobj.variables[’lat’].units

2 |fileobj.close()

4 |[lonall, latall] = N.meshgrid(lon, lat)

s |mymapf = plt.contourf(lonall, latall, T_time0®, 10,

17 cmap=plt.cm.Reds)
s |mymap = plt.contour(lonall, latall, T_time®, 10,
19 colors="k’)

» |plt.clabel (mymap, fontsize=12)

a |plt.axis([®, 360, -90, 90])

» |plt.xlabel(’Longitude [’ + lon_units + ']’°)

» |plt.ylabel(’Latitude [’ + lat_units + ']’°)

u |plt.colorbar(mymapf, orientation='horizontal’)
25
% |plt.savefig(’exercise-T-contour.png’)
» |plt.show()

Lines 5-12 read in the data from the netCDF file. In line 6, we obtain
the 2-D slab of surface air temperature at time zero and assign it to the array
variable T_time®. The lon and lat variables, created in lines 8 and 10,
are 1-D vectors. To be on the safe side, we want 2-D versions of these
vectors, which we create in line 14 using meshgrid and assign as lonall
and latall. Line 16 specifies that we plot the contour plot with 10 contour
intervals, and in line 17, we specify a red gradient color map to use for the
contour interval filling.

In lines 18-19, we create a contour map of lines only, to superimpose on
top of the filled contour plot. We assign the result of the contour call to
mymap, which we’ll use with the clabel function in line 20 (that generates

157

The Basemap
package and
map
projections.

9.6. SUPERIMPOSING A MAP

== 2 Y s - 17z
: 2.000-) \.i:‘. = -
< 50
£
o
=
u‘\l
Q
g
> o0
5
Q
=
2
]
& -50
I I -‘--.I ————— =" = = 4__'.|.__.--‘h-d|
0 50 100 150 200 250 300 350

Longitude [degrees_east]

-48 —32 16 0 16 32
Figure 9.4: Graph created by the solution code to Exercise 28.

the contour labels). Line 21 specifies the axes range using the axis function,
labeling occurs in lines 22-23, the color map in line 24, and the last two lines
save the figure to a file and display the figure on the screen.

Note how the results of both the contourf and contour calls need to be
assigned to objects which are used by the colorbar and clabel functions as
input (in lines 24 and 20, respectively). Also note that on some installations,
if you call show before savefig, things do not always write correctly to the
file, so in my code I call savefig first, just to be safe.

The code generates a plot like the one in Figure 9.4. This code is in the
file exercise-viz-contour.py in the code_files subdirectory of the course_files
directory.

9.6 Superimposing a map

Often, AOS users will want to superimpose a map of some sort (e.g., conti-
nental outlines) onto a contour plot. To do so, you need to use the Basemap
package, which handles map projection setup for matplotlib. Note, however,
that Basemap is a separate package from matplotlib, is distributed under a

158

9.6. SUPERIMPOSING A MAP

different license, and often has to be installed separately.* For many oper-
ating system environments, you need to build Basemap from source. (It is,
however, a Debian package in Ubuntu 12.04.)° If you have the full version
of the Enthought Python Distribution (EPD), Basemap is installed for you;
Basemap, however, is not part of EPD Free.

To create a map and then superimpose a contour plot on the map, follow
these steps:

e Instantiate an instance of the Basemap class.
e Use methods of that instance to draw continents, etc.

e Map the 2-D latitude and longitude coordinates of your dataset to the
coordinates in the map projection by calling your Basemap instance
with the dataset coordinates as input arguments.

e Make your contour plot using regular matplotlib commands.

This will become much clearer with an example:

Example 58 (Contour plot on a cylindrical projection map limited to the
global Tropics):

Assume you have three 2-D arrays as input: data, which is the data being
contoured, and lonall and latall, which give the longitudes and latitudes
(in degrees), respectively, of the elements of data. The code to create the
contour plot and the map is:

1 |import numpy as N

> |import matplotlib.pyplot as plt

3 |import mpl_toolkits.basemap as bm

4 |mapproj = bm.Basemap(projection="cyl’,

5 llcrnrlat=-20.0, llcrnrlon=-180.0,
6 urcrnrlat=20.0, urcrnrlon=180.0)

7 |mapproj.drawcoastlines()

s |mapproj.drawparallels(N.array([-20, -10, 0, 10, 20]),

9 labels=[1,0,0,0])

10 |mapproj.drawmeridians(N.array([-180, -90, 0, 90, 180]),
11 labels=[0,0,0,1])

2 |lonproj, latproj = mapproj(lonall, latall)

13 |plt.contour(lonproj, latproj, data)

4See http://sourceforge.net/projects/matplotlib/files/matplotlib-toolkits for the down-

loads (accessed August 16, 2012).

3See http://packages.ubuntu.com/en/precise/python-mpltoolkits.basemap for a descrip-

tion of the package (accessed August 16, 2012).

159

Steps to
creating a
contour plot
on a map.

Basemap map
projection
parameters.

Basemap
instance
methods

create
coastlines,
etc.

Calling object
instances.

9.6. SUPERIMPOSING A MAP

In lines 4-6, what do you think the keywords do? The 1abels keywords in
lines 9 and 117

Solution and discussion: The first three lines of the code imports the
needed packages. Notice that Basemap is normally found as a subpackage
of the mpl_toolkits package. Lines 4—6 create mapproj, a Basemap instance.
The keyword input parameters set the projection (cylindrical) and give the
“corner” latitude and longitude values of the map: 11lcrnrlat is the lower-
left corner’s latitude, urcrnrlon is the upper-right corner’s longitude, etc.

Once the mapproj Basemap instance is created, we use methods attached
to the instance to draw coastlines (line 7), latitude lines (lines 8-9), and longi-
tude lines (lines 10—11). The positional input argument for drawparallels
and drawmeridians specifies the locations at which to draw the latitude
and longitude lines. The labels keyword is set to a 4-element list of in-
tegers that specify where to draw the labels. If the first element is set to 1,
labels are drawn to the left of the plot, if the second element is set to 1, labels
are drawn to the right of the plot, and the third and fourth elements control
the top and bottom labels, respectively. Thus, line 9 specifies latitude line
labels on the left side of the plot (only) and line 11 specifies longitude line
labels at the bottom of the plot (only).

Line 12 calls the mapproj instance as if it were a function. The 2-D
longitude and latitude arrays are passed into the call. Two 2-D arrays are
returned that specify the longitude and latitude values, but altered to account
for the projection, that can then be passed into a contour plot call, along with
the data to contour, as is done in line 13.

We haven’t really talked about calling object instances, but indeed, we
can define a special method __call__in a class that will be executed when
you call an instance (that is, treat the instance like it were a function). That’s
essentially what is happening in line 12. Note that calling an instance is not
the same as instantiating the instance!

Basemap supports many different types of projections, and the input pa-
rameters when instantiating a Basemap object will change depending on the
projection you specify. The SciPy Cookbook entry for Basemap gives a
nice introduction: http://www.scipy.org/Cookbook/Matplotlib/Maps. Also
see the Basemap documentation: http://matplotlib.github.com/basemap.

160

9.7. EXERCISE ON SUPERIMPOSING A MAP

9.7 Exercise on superimposing a map

> Exercise 29 (Contour plot of surface air temperature with continental
outlines):

Redo Exercise 28 but superimpose a map with continental outlines on it.

Solution and discussion: To save space, I only provide the core of my

solution here. The full code is in the file exercise-viz-basemap.py in the
code _files subdirectory of the course_files directory:

mapproj = bm.Basemap(projection="cyl’,
llcrnrlat=-90.0, llcrnrlon=0.0,
urcrnrlat=90.0, urcrnrlon=360.0)
mapproj.drawcoastlines()
mapproj.drawparallels(N.array([-90, -45, 0, 45, 90]),
labels=[1,0,0,0])
mapproj.drawmeridians(N.array ([0, 90, 180, 270, 360]),
labels=[0,0,0,11)
lonall, latall = mapproj(lon2d, lat2d)

mymapf = plt.contourf(lonall, latall, T_time®, 10,
cmap=plt.cm.Reds)
mymap = plt.contour(lonall, latall, T_time0®, 10,
colors="k’)
plt.clabel (mymap, fontsize=12)
plt.title(’Air Temperature [’ + T_units + ’]’)
plt.colorbar(mymapf, orientation="horizontal’)

plt.savefig(’exercise-T-basemap.png’)
plt.show()

This code makes a plot like the one in Figure 9.5.

This code is essentially a combination of Exercise 28 and Example 58.

The one difference is in lines 2-3 of this exercise, where I specify the longi-
tude corner keywords by the range 0 to 360 degrees instead of —180 to 180
degrees (as in Example 58). Since the data starts with 0 degrees longitude,
I decided to put that in the lower-left corner. But referencing longitude by
negative longitude values works fine in Basemap.

161

9.8. SUMMARY

45°N

00

45°5

—48 —-32 -16 0 16 32

9.8

Basic

Figure 9.5: Graph created by the solution code to Exercise 29.

Summary

Python visualization using matplotlib is very much like what you’re

probably used to using in Matlab and IDL. Coupled with the Basemap mod-
ule, matplotlib enables you to do the basic line and contour plots that form
the bread-and-butter of AOS visualization. Details on matplotlib are found
at http://matplotlib.sourceforge.net.

Other Python

This chapter, of course, only scratches the surface regarding Python visu-

a0s alization. The PyAOS website keeps a list of packages that may be of interest
visualization to AOS users (http://pyaos.johnny-lin.com/?page_id=117). Some packages
packages. of note include:

ParaView: Analysis and visualization package for very large datasets.
PyGrADS: Python interface to GrADS.

PyNGL: All of the basic functionality of NCAR Graphics in a Python
interface.

UV-CDAT: Ultrascale Visualization-Climate Data Analysis Tools.

VisTrails: Visualization tool with workflow management that tracks
the provenance of the visualization and data.

162

9.8. SUMMARY

e VPython: An easy-to-use 3-D visualization and animation environ-
ment.

Unlike proprietary languages which have only one visualization engine
integrated with the language, Python’s open-source nature permits radical
experimentation with different methods of implementing visualization tools.
This does create some confusion, and can make installation a bear, but it
also provides you the right visualization tool for your specific needs. Have a
very large dataset? Try ParaView. Is workflow provenance integration vital
to you? Give VisTrails and UV-CDAT a shot. Want to do really simple 3-
D animation for educational modeling? VPython is a snap. But for many
everyday visualization tasks, matplotlib works fine.

163

9.8. SUMMARY

164

