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Chapter 8

An Introduction to OOP Using
Python: Part II—Application to
Atmospheric Sciences Problems

Ch. 7, introduced us to the syntax of object-oriented programming (OOP), as
well as an understanding of how we can use OOP to write AOS programs that
are more flexible, extensible, and less error prone. In this chapter, we look at
a few applications of OOP to AOS problems. In particular, we will examine
how objects can be used to manage dataset metadata (including missing val-
ues), related but unknown data, and dynamically change subroutine execu-
tion order. Of these three topics, the first is addressed by two well-developed
packages, NumPy and the Climate Data Management System (cdms). The
second and third topics are implemented in two experimental packages, but
they provide useful illustrations of how we can apply OOP to AOS problems.

8.1 Managing metadata and missing values
All datasets of real-world phenomena will have missing data: instruments
will malfunction, people will make measurement errors, etc. Traditionally,
missing data has been handled by assigning a value as the “missing value”
and setting all elements of the dataset that are “bad” to that value. (Usually,
the missing value is a value entirely out of the range of the expected values,
e.g., −99999.0.) With OOP, objects enable us to do this in a more robust
way.

Earlier, we saw that Python supports array variables (via NumPy), and
we also described how all variables in Python are not technically variables,
but objects. Objects hold multiple pieces of data as well as functions that

121



8.1. MANAGING METADATA AND MISSING VALUES

operate on that data, and for atmospheric and oceanic sciences (AOS) appli-
cations, this means data and metadata (e.g., grid type, missing values, etc.)
can both be attached to the “variable.” Using this capability, we can de-
fine not only arrays, but two more array-like variables: masked arrays and
masked variables. These array-like variables incorporate metadata attached
to the arrays and define how that metadata can be used as part of analysis,
visualization, etc.

8.1.1 What are masked arrays and masked variables?
Recall that arrays are n-dimensional vectors or grids that hold numbers (or
characters). Masked arrays, then, are arrays that also have a “mask” attribute
which tells you which elements are bad, and masked variables are masked
arrays that also give domain information and other metadata information.
Let’s look at each type of variable in detail.

In an array, every element has a value, and operations using the array are
Review of

arrays. defined accordingly. Thus, for the following array:

>>> import numpy as N

>>> a = N.array([[1,2,3],[4,5,6]])

>>> a

array([[1, 2, 3],

[4, 5, 6]])
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8.1. MANAGING METADATA AND MISSING VALUES

the contents of the array are numbers, and operations such as addition, mul-
tiplication, etc. are defined as operating on those array elements, as we saw
in Ch. 4.

Masked arrays are arrays with something extra. That something extra is
Masked
arrays.a mask of bad values; this mask is an attribute of the array and thus auto-

matically travels with the numerical (or character) values of the elements of
the array. Elements of the array, whose corresponding elements in the mask
are set to “bad,” are treated as if they did not exist, and operations using the
array automatically utilize the mask of bad values. Consider the array a and
the masked array b:

>>> import numpy as N

>>> import numpy.ma as ma

>>> a = N.array([[1,2,3],[4,5,6]])

>>> b = ma.masked_greater(a, 4)

>>> b

masked_array(data =

[[1 2 3]

[4 -- --]],

mask =

[[False False False]

[False True True]],

fill_value = 999999)

>>> print a*b

[[1 4 9]

[16 -- --]]

The mask is a boolean array whose elements are set to True if the value
Masked array
masks.in the corresponding array is considered “bad.” Thus, in the masked array b,

the last two elements of the second row have mask values set to True, and
when the data for the masked array is printed out for a human viewer, those
elements display “--” instead of a number.

We also note that the masked array b has an attribute called fill value
Masked array
fill values.that is set to 999999. As we’ll see in Example 52, this is the value used to

fill-in all the “bad” elements when we “deconstruct” the masked array. That
is to say, when we convert a masked array to a normal NumPy array, we need
to put something in for all the “bad” elements (i.e., where the mask is True):
the value of fill value is what we put in for the “bad” elements.

Just as operators have been defined to operate in a special way when the
operands are arrays (i.e., the + operator adds element-wise for arrays), oper-
ators have also been defined to operate in a special way for masked arrays.
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8.1. MANAGING METADATA AND MISSING VALUES

Figure 8.1: Example of information attached to a masked variable. Adapted
from a figure by Bob Drach, Dean Williams, and Charles Doutriaux. Used
by permission.

For masked arrays, operations using elements whose mask value is set to
True will create results that also have a mask value set to True. Thus, in the

Operations
using masked

arrays.

example above, the product of array a and masked array b yields an array
whose last two elements of the second row are also “bad,” since those corre-
sponding elements in masked array b are bad: a good value times a bad value
gives a bad value. Thus, masked arrays transparently deal with missing data
in real-world datasets.

A masked variable is like a masked array but with additional informa-
Masked

variables. tion, such as axes and domain information, metadata, etc. Figure 8.1 shows
an example of the additional information that can be attached to a masked
variable.

The domain information and other metadata attached to a masked vari-
able can be used in analysis and visualization routines. UV-CDAT functions,
for instance, are pre-built to do just this. As an example, consider Figure 8.2
which shows the use of UV-CDAT’s cdms2 module to read in the total cloudi-
ness (clt) variable from a netCDF file and UV-CDAT’s vcs module to render
the plot using a single command. This is possible because the vcs boxfill
method uses the information attached to the masked variable to properly title
the graph, label the units, etc.

As a summary, Figure 8.3 gives a schematic that shows how each of
these three types of “arrays” relate to each other. Arrays and masked arrays
are both part of NumPy whereas masked variables are part of UV-CDAT.
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8.1. MANAGING METADATA AND MISSING VALUES

is made by:
>>> v =

vcs.init()

>>>

v.boxfill(clt)

Figure 8.2: Example showing plot of the total cloudiness (clt) variable read
from a netCDF file and the code used to generate the plot, using UV-CDAT
masked variables.

Figure 8.3: Schematic of arrays, masked arrays, and masked variables.
Adapted from a drawing by Bob Drach, Dean Williams, and Charles Doutri-
aux. Used by permission.
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8.1. MANAGING METADATA AND MISSING VALUES

(See Section 10.2 for more information on UV-CDAT.)

8.1.2 Constructing and deconstructing masked arrays
We covered construction of normal NumPy arrays in Ch. 4, so we won’t re-
visit that topic here. Construction of masked variables is normally not some-
thing you would do in a program; if you already have the metadata available
to you in the program, it may not make much sense to attach it to a masked
variable instead of using it directly later on in the program. Many times, for
most common uses, masked variables will be automatically constructed for
you upon read from a self-describing input file format like netCDF. As a re-
sult, in this section, I will only cover the construction and deconstruction of
masked arrays. For details on the construction and deconstruction of masked
variables, please see the CDAT documentation.1

NumPy provides a number of masked array constructors. I’ll illustrate
Masked array

submodule
and

constructors.

the use of a few of these constructors through examples. Details of these
functions, as well as information on other masked array constructors, are
found in the NumPy documentation.2 In the examples below, all functions
are part of the numpy.ma submodule and I assume I’ve already imported
that submodule with import numpy.ma as MA and that NumPy is already
imported as import numpy as N. Before you type in the example, try to
guess what the output will be, based on the command syntax itself. Note that
you can see what a looks like by typing in the array name a by itself, which
will reveal the data, mask, and fill value.

Example 50 (Make a masked array by explicitly specifying a mask and
fill value):

Type in the following in the Python interpreter:

a = MA.masked_array(data=[1,2,3],

mask=[True, True, False], fill_value=1e20)

What does the variable a look like?

Solution and discussion: As expected, the first two array elements are
now considered “bad.” Here is the result of an array inquiry done in the
Python interpreter:

1http://www2-pcmdi.llnl.gov/cdat/manuals (accessed August 17, 2012).
2http://docs.scipy.org/doc/numpy/reference/maskedarray.html (accessed August 17,

2012).
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8.1. MANAGING METADATA AND MISSING VALUES

>>> a

masked_array(data = [-- -- 3],

mask = [ True True False],

fill_value = 999999)

Often times, we determine which data values should be masked on the
basis of whether or not the data values are beyond a given acceptable value
or some other similar test. Thus, it makes sense to have functions to cre-
ate masked arrays based on such tests. Here are a few examples of such
functions:

Example 51 (Make a masked array by masking values based on condi-
tions):

Type in the following in the Python interpreter:
Masked array
construction
using
conditions.

a = MA.masked_greater([1,2,3,4], 3)

data = N.array([1,2,3,4,5])

b = MA.masked_where(N.logical_and(data>2, data<5), data)

What do the variables a and b look like?

Solution and discussion: The first line creates a masked array a where
all values greater than 3 have mask values set to True. The third line creates
a masked array b where all values greater than 2 and less than 5 have mask
values set to True. Note that masked where’s first argument is a boolean
array that specifies where the mask will be set to True. An inquiry into
masked arrays a and b should return:

>>> a

masked_array(data = [1 2 3 --],

mask = [False False False True],

fill_value = 999999)

>>> b

masked_array(data = [1 2 -- -- 5],

mask = [False False True True False],

fill_value = 999999)

There are times when we want just a regular NumPy array—perhaps to
output to a file format that does not support object attributes—and so we
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8.1. MANAGING METADATA AND MISSING VALUES

need a way to convert a masked array into a normal array. In that conversion,
Converting

from a
masked array

to a regular
array with
filled.

the function will fill all “bad” elements with a special value that no “good”
element would have. The masked array submodule function filled does
the job. Let’s look at an example:

Example 52 (Make a regular NumPy array from a masked array):
Type in the following in the Python interpreter:

b = MA.masked_array(data=[1.0, 2.0, 3.0],

mask=[True, True, False], fill_value=-1e23)

a = MA.filled(b)

What do the variables b and a look like?

Solution and discussion: In this example, we start with a masked array
and convert it into a normal NumPy array a. Thus, the variables b and a are:

>>> b

masked_array(data = [-- -- 3.0],

mask = [ True True False],

fill_value = -1e+23)

>>> a

array([ -1.00000000e+23, -1.00000000e+23,

3.00000000e+00])

(I manually added a line break in the screenshot to make it fit on the page.)
Note that we create our masked array with a fill value different than the

Customized
fill value for a
masked array.

default of 999999. Thus, the array a that results will have −1 × 1023 as the
“missing value” value. Also note that if the type of data and the type of
fill value conflict, the default value of fill value will be used despite
the explicit specification of fill value in the function call (if the default
fill value is of the same type as data). Thus:

>>> b = MA.masked_array(data=[1, 2, 3],

mask=[True, True, False], fill_value=-1e23)

>>> b

masked_array(data = [-- -- 3],

mask = [ True True False],

fill_value = 999999)

yields a masked array b with a fill value set to the default value, which is
an integer.
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8.1. MANAGING METADATA AND MISSING VALUES

By the way, the filled function also comes in a masked array method
form, so instead of calling the function filled, i.e:

Filled is
also a masked
array method.a = MA.filled(b)

you can call the method attached to the masked array, i.e.:

a = b.filled()

Remember, bad values (i.e., the missing values) have mask values set to
True in a masked array.

8.1.3 Exercise using masked arrays

� Exercise 25 (Creating and using a masked array of surface air tem-
perature):

Open the example netCDF NCEP/NCAR Reanalysis 1 netCDF dataset
of monthly mean surface/near-surface air temperature (or the netCDF dataset
you brought) and read in the values of the air, lat, and lon variables into
NumPy arrays. Take only the first time slice of the air temperature data. (The
example data is in course files/datasets in the file air.mon.mean.nc.)

Create an array that masks out temperatures in that time slice in all lo-
cations greater than 45◦N and less than 45◦S. Convert all those temperature
values to K (the dataset temperatures are in ◦C). Some hints:

• You can use the code in exercise-netcdf.py in course files/code files as
a starting point.

• Use the meshgrid function in NumPy to make it easier to handle the
latitude values in array syntax (you can, of course, always use for
loops).

• The air temperature, directly from the netCDF file, has the shape (755,
73, 144) and thus is dimensioned time, latitude, longitude.

• You can test whether you masked it correctly by printing the values of
your masked array at the poles and equator (i.e., if your masked array
is called ma data, you would print ma data[0,:], ma data[-1,:],
and ma data[36,:]).
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8.2. MANAGING RELATED BUT UNKNOWN DATA: SEEING IF
ATTRIBUTES ARE DEFINED

Solution and discussion: Here’s my solution:

1 import numpy as N

2 import numpy.ma as MA

3 import Scientific.IO.NetCDF as S

4

5 fileobj = S.NetCDFFile(’air.mon.mean.nc’, mode=’r’)

6 data = fileobj.variables[’air’].getValue()[0,:,:]

7 lat = fileobj.variables[’lat’].getValue()

8 lon = fileobj.variables[’lon’].getValue()

9 fileobj.close()

10

11 [lonall, latall] = N.meshgrid(lon, lat)

12 ma_data = MA.masked_where( \

13 N.logical_or(latall>45,latall<-45), data )

14 ma_data = ma_data + 273.15

15

16 print ’North pole: ’, ma_data[0,:]

17 print ’South pole: ’, ma_data[-1,:]

18 print ’Equator: ’, ma_data[36,:]

The result of line 16 should show that all the points in the zeroth row of
ma data are “bad,” as should the result of line 17 for the last row. All the
points in line 18, which are the Equatorial points, should be “good” values,
and in units of Kelvin.

See the code in exercise-ma.py in course files/code files for the above
solution (with minor changes).

8.2 Managing related but unknown data: Seeing
if attributes are defined

In the atmospheric and oceanic sciences, we are often interested in “sec-
ondary” quantities, for instance, virtual temperature, vorticity, etc., that are
derived from “primary” quantities (like temperature, pressure, etc.) and other
secondary quantities. In other words, final quantities often depend on both
basic and intermediate quantities. For instance, density depends on virtual
temperature which depends on temperature. Thus, many of these quantities
are related to each other.

In traditional procedural programming, to calculate secondary variables,
we would figure out all the quantities we want to calculate (both final and in-
termediate), allocate variables for all those quantities, then calculate our de-
sired variables using the proper sequence of functions. But unless we know
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exactly what we want to calculate, we won’t know what variables to allocate
and what functions to call; we often get around that problem by allocating
memory for every conceivable variable of interest. But why should we have
to do this? Put another way, the problem with the procedural method is that
we are limited to static analysis. Since computers are all about automation,
why can’t we have the computer automatically calculate what quantities it
needs when it needs it; in the atmosphere and ocean, all these quantities are
interrelated. This would enable dynamic analysis.

Python, it turns out, can do dynamic variable management. At any time
Using Python
for dynamic
variable
management.

in the program, objects can add and remove attributes and methods and check
if an attribute or method exists. Let’s take advantage of these capabilities and
design a class to manage the multiple atmospheric quantities we’re calculat-
ing: to make sure we have calculated what we need to calculate, when we
need it. We define an object class Atmosphere where the following occurs:

• Atmospheric quantities are assigned to attributes of instances of the
class.

• Methods to calculate atmospheric quantities:

– Check to make sure the required quantity exists as an attribute.

– If it doesn’t exist, the method is executed to calculate that quan-
tity.

– After the quantity is calculated, it is set as an attribute of the
object instance.

What might something with these traits look like in Python code? Here’s
a skeleton class definition:
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1 class Atmosphere(object):

2 def __init__(self, **kwds):

3 for ikey in kwds.keys():

4 setattr(self, ikey, kwds[ikey])

5

6 def calc_rho(self):

7 if not hasattr(self, ’T_v’):

8 self.calc_virt_temp()

9 elif not hasattr(self, ’p’):

10 self.calc_press()

11 else:

12 raise ValueError, \

13 "cannot obtain given initial quantities"

14

15 self.rho = \

16 [... find air density from self.T_v and

17 self.p ...]

Before talking about the code in specific, let me briefly describe what
The

setattr,
hasattr,

getattr, and
delattr

functions.

the setattr, hasattr, getattr, and delattr functions do (the last two
are not used in the code above, but I describe them for completeness). As
the names suggest, these functions manipulate or inquire of the attributes of
objects. However, because they are functions, they enable you to interact
with attributes without having to actually type out the name of the attribute.
For instance, consider the act of setting an attribute which we’ve already seen
can be done with assignment . So, if we have the following masked array a
(as in Example 51):

import numpy.ma as MA

a = MA.masked_greater([1,2,3,4], 3)

we can manually change the fill value from its default value 999999 to some-
thing else by assignment:

>>> a.fill_value=-100

>>> a

masked_array(data = [1 -- --],

mask = [False True True],

fill_value = -100)

or we can use the function setattr:

132



8.2. MANAGING RELATED BUT UNKNOWN DATA: SEEING IF
ATTRIBUTES ARE DEFINED

>>> setattr(a, ’fill_value’, 456)

>>> a

masked_array(data = [1 -- --],

mask = [False True True],

fill_value = 456)

The setattr function takes three arguments. The first is the object
whose attribute you wish to set. The second is the name of the attribute
you wish to set (as a string). The third argument is the new value of the at-
tribute you are setting. Because setattr is a function, you can pass in the
arguments as variables. You do not have to type in a period and equal sign,
which the assignment syntax requires you to do. Functions can receive vari-
ables as arguments and so can be automated; typing a period and equal sign
can only be applied to actually defined objects and so cannot be automated.
Normally, methods are tailored for a class of objects and will not be set dur-
ing run-time. However, you can add methods to an instance at run-time, if
you wish, by setting an attribute to a function or method object.

The hasattr function tests whether a given object has an attribute or
method of a given name. It takes two arguments, the first being the ob-
ject under inquiry and the second being the name of the attribute or method
you’re checking for, as a string. True is returned if the object has the attribute
you’re checking for, False otherwise. Thus, for masked array a:

a = MA.masked_greater([1,2,3,4], 3)

print hasattr(a, ’fill_value’)

print hasattr(a, ’foobar’)

the first print line will print True while the second will print False.
The functions getattr and delattr have the same syntax: The first

argument is the object in question while the second argument is the attribute
to either get or delete. getattr returns the attribute or method of interest
while delattr removes the attribute of interest from the given object. (Note
that delattr cannot remove a method that is hard-coded into the class defi-
nition.)

With this as background, let’s see what this code does. We pass in initial
values for our atmospheric variables via the init method, as normal, but
in this case, all our initial values come through keyword parameters as given
in the kwds dictionary (see Example 16 for more on passing a keyword pa-
rameters dictionary into a function, as opposed to referring to every keyword
parameter manually). In our keyword parameters dictionary, we assume that
the keyword names will be the names of the attributes that store those pa-
rameter values. Once passed in we set the keyword parameters to instance
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attributes of the same name as the keyword. For instance, if an Atmosphere
object is instantiated by:

myatmos = Atmosphere(T=data1, q=data2)

(where data1 and data2 are the data, most likely arrays), then upon instan-
tiation, myatmos will have the attribute T and the attribute q which refer to
the data variables data1 and data2, respectively. That is to say, myatmos.T
refers to the data1 data while myatmos.q refers to the data2 data.

How does the init code do this? In lines 3–4 in the class definition,
we loop through the keys in kwds, which are strings, and use the built-in
function setattr to set the values of the dictionary entries to attributes of
the instance (i.e., self), with the names given by the corresponding keys
(i.e., ikey). Note how we do not have to type in the variables to set them!
The function setattr does this for us. Thus, in our class definition, we do
not need to know ahead of time which atmospheric quantities will be initially
defined; all that can be determined at runtime, and our code will be the same.

How do methods that calculate quantities work with the attributes that
hold atmospheric data? Lines 6–17 in the class definition define the method
calc rho which calculates air density using an algorithm that requires vir-
tual temperature and pressure be already defined. So, calc rho first checks
if those attributes exist (the built-in hasattr function checks to see if an at-
tribute is defined in the instance self), and if not, calc rho calls the meth-
ods (defined elsewhere in the class) that calculate those atmospheric quan-
tities. Those methods, in turn, are structured just like calc rho and will
do the same thing (check for an atmospheric quantity attribute, and if not
found, calculate that quantity). Eventually, you’ll calculate what you need
given what you have; if not, you’ll get an error (as in the raise statement
of lines 12–13). Once all necessary variables are calculated, lines 16–17 cal-
culates the air density and line 15 sets the result to an instance attribute of
self called rho.

So, let’s step back and think about what we’ve just done. First, be-
cause the class Atmosphere stores all primary and secondary atmospheric
quantities needed to arrive at a quantity of interest, and the algorithms of
Atmosphere are (hopefully) consistent with each other, all of the atmo-
spheric quantities in an Atmosphere instance will be consistent with one
another. Second, by using the hasattr function, the class automatically en-
sures all necessary secondary quantities are available if needed for the cur-
rent calculation. In fact, the class will find a way to calculate what you asked
it to, if the algorithms in the class will allow you to make the calculation you
want using the initial values you gave. Lastly, the class can be used with any
set of initial values that are input. The ability to inquire of and manipulate
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8.3. EXERCISE TO ADD TO THE ATMOSPHERE CLASS

the attributes and methods of an object through functions enables us to write
code in which the names of the initial atmospheric quantities are not known
ahead of time. Our code is more flexible (and, in this case, concise) as a
result.

8.3 Exercise to add to the Atmosphere class

� Exercise 26 (Adding the method calc virt temp):
Write the skeleton definition for a method calc virt temp (to be added

to the Atmosphere class) that calculates the virtual temperature given mix-
ing ratio (r) and temperature (T). Have this method call a method to calculate
mixing ratio (calc mix ratio) if mixing ratio is not yet an object attribute.
(We’ll assume temperature has to be given.)

Solution and discussion: Here’s the Atmosphere class with the skeleton
definition for calc virt temp added:
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1 class Atmosphere(object):

2 def __init__(self, **kwds):

3 for ikey in kwds.keys():

4 setattr(self, ikey, kwds[ikey])

5

6 def calc_rho(self):

7 if not hasattr(self, ’T_v’):

8 self.calc_virt_temp()

9 elif not hasattr(self, ’p’):

10 self.calc_press()

11 else:

12 raise ValueError, \

13 "cannot obtain given initial quantities"

14

15 self.rho = \

16 [... find air density using self.T_v and

17 self.p ...]

18

19 def calc_virt_temp(self):

20 if not hasattr(self, ’r’):

21 self.calc_mix_ratio()

22 else:

23 raise ValueError, \

24 "cannot obtain given initial quantities"

25

26 self.T_v = \

27 [... find virtual temperature using

28 self.r and self.T ...]

I once wrote a package atmqty that does what Atmosphere does. It was
one of the earlier things I wrote and needs a major rewrite, but you might find
some of the routines and the structure to be informative.3 Also, the object-
oriented approach Atmosphere uses was essentially the way R. Saravanan
in the late 1990’s (then at NCAR) structured his Hyperslab OPerator Suite
(HOPS) toolkit for manipulating climate model output. Written for the Inter-
active Data Language (IDL) and Yorick, Saravanan’s work was really ahead
of its time in the atmospheric and oceanic sciences community.4

One final note: In this section, we discussed dynamic variable manage-
ment via object attributes and methods. But this may sound familiar to you—

3See http://www.johnny-lin.com/py pkgs/atmqty/doc for details (accessed August 17,
2012.)

4See http://www.cgd.ucar.edu/cdp/svn/hyperslab.html for details (accessed April 5,
2012.)
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aren’t these the same things that a dictionary can do? Through this example,
we’ve stumbled upon a secret in Python. Not only is everything an object
in Python, but (nearly) everything in Python is managed by dictionaries. All

Nearly
everything in
Python is
managed by
dictionaries.

objects have a private attribute dict , a data structure that manages the
attributes and methods namespace just like a dictionary because it is a dic-
tionary! And so, if you really need to, you can access that dictionary like
any other dictionary. (I do not, however, recommend this.)5 This is a nice
illustration of how compact is the definition of Python: a relatively small set
of data structures and principles are repeatedly reused in many aspects of the
language’s definition. This makes the language easier to use, because you
have fewer “special structures” to try and remember.

8.4 Dynamically changing subroutine execution
order (optional)

(This section is a bit more advanced, so if you feel like it’s a little too much,
just skip it. The main idea is that by using lists and an object encapsula-
tion, you can dynamically change subroutine execution order in a Python
program. This opens up AOS models to easily answer whole new classes of
scientific problems.)

In traditional procedural programming, the execution order of subrou-
In procedural
program-
ming,
subroutine
execution
order is fixed.

tines is fixed, because subroutines are called by typing in the subroutine
name (along with a call statement, in Fortran). Even branching (via if
statements) is fixed in that the node cannot move from the place where you
typed it in.

In contrast, we saw that Python’s list structure is an ordered set that is
mutable and can be changed while the program is running. Why, then, don’t

Python lists
are runtime
mutable. Use
them to
manage
subroutine
execution
order.

we use a list to manage subroutine execution order? Then, if we want to alter
execution order, we just reorder, insert, and/or delete elements from the list.

We’ll embed such a list of subroutines—a “runlist”—as an attribute of
the same name in a class Model where each of the subroutines is a method
of the class and a method execute runlist will go through the list of sub-
routines, executing them in order. A skeleton definition for such a class, for
an oceanic general circulation model (GCM), might look like the following

5In general, you would do well to limit your interaction with dict to the built-in
functions (e.g., hasattr) designed for such interactions. I confess, in my earlier days in
using Python, I wrote a lot of code that directly accessed dict , but I now repent of what
I did.
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(note the runlist is not a complete listing of all routines in the model, but I
list just a few to illustrate the idea):

1 class Model(object):

2 def __init__(self, *args, **kwds):

3 [...]

4 self.runlist = [’surface_fluxes’, ’bottom_fluxes’,

5 ’density’, ’advection’,

6 ’vertical_mixing’, ’tracers’]

7 [...]

8 def execute_runlist(self):

9 for imethodname in self.runlist:

10 f = getattr(self, imethodname)

11 f()

12 def surface_fluxes(self):

13 [... calculate surface fluxes ...]

14 def bottom_fluxes(self):

15 [... calculate bottom boundary fluxes ...]

16 [...]

Most of this code are placeholders (denoted by the square bracketed el-
lipses), but the execute runlist method definition (lines 9–11) is com-
plete (barring error checking) and bears comment. That method iterates
through the runlist attribute list of subroutine (i.e., method) names, uses
each name to retrieve the method itself, then executes the method. The vari-
able f in the code is the actual method given by a string in the runlist
attribute; the getattr function will give you the item attached to an ob-
ject, regardless of whether it is an attribute or method (thus, getattr is
somewhat misnamed). In this sense, objects actually only have attributes;
it’s just some attributes are data while others are functions that act on data.
Once f is assigned to a method, the syntax f() calls the function, just like
any other function call. (As we saw in Section 6.5, functions are objects
in Python like any other object, and they can be stored, assigned, etc. So
the f() call is no different than if I had typed self.surface fluxes(),
self.bottom fluxes, etc.)

There are a variety of possible ways to use flexibility in subroutine exe-
cution order; here’s one. Sometimes, the execution order of climate model
subroutines affects model results. Thus, you might want to do a series of
runs where subroutine execution order is shuffled. To do this using tradi-
tionally procedural languages, you would have to create separate versions of
the source code and manually change the order of subroutine calling in each
version of the code (then recompile, run, etc.). Using the Model class above,
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you would just create multiple instances of Model and create different ver-
sions of the runlist attribute where the order of the items in the list are
shuffled.

How to do the list shuffling?6 One way is to make use of the function
permutations (from the itertools module) which will create an iterator that
will step you through all permutations of the argument of permutations.
Thus, this code:

Stepping
through
permutations.a = itertools.permutations([0,1,2])

for i in a:

print i

will print out all the different orderings of the list [0,1,2]:

(0, 1, 2)

(0, 2, 1)

(1, 0, 2)

(1, 2, 0)

(2, 0, 1)

(2, 1, 0)

(Tuples result, so we will remember to use the list conversion function to
give ourselves a list.)

We can apply this permutation function to the runlist attribute; in-
stead of permuting a list of numbers, we will permute a list of strings. Each
permutation will be set to the runlist attribute of the Model instance and
executed. The code to do this would (basically) be:

1 import itertools

2 mymodel = Model([... input arguments ...])

3 runlist_copy = list(mymodel.runlist)

4 permute = itertools.permutations(runlist_copy)

5 for irunlist in permute:

6 mymodel.runlist = list(irunlist)

7 mymodel.execute_runlist()

Again, what have we done? By using lists and other Python helper func-
tions on a model encapsulated in a class, we’ve created a series of model

6For more on shuffling and permutations in Python, see http://stackoverflow.com/

questions/104420/how-to-generate-all-permutations-of-a-list-in-python (accessed August
10, 2012).
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runs each of which executes the model’s subroutines using one of the possi-
ble permutations of subroutine execution order. The lines of code needed to
make this series of model runs is trivial (just 7). OOP, plus Python’s pow-
erful data structures and amazing library of modules, enables AOS users to
easily use atmosphere and ocean models in ways that traditional methods of
programming make difficult (or even impossible).

An aside on assignment by reference vs. value: In line 3 above, I
create a copy of the runlist attribute to make sure the permutations
function is not acting on a list that will be changing in the loop. I do this

Python
assignment is

usually by
reference

rather than
value.

because Python, for most variable types, including lists, does assignment
by reference rather than value. Thus, the assignment in line 6 will propa-
gate to all references to mymodel.runlist. By using the list function on
mymodel.runlist in line 3, I make sure that runlist copy is separate in
memory from mymodel.runlist. Here’s another example to make clearer
the distinction between assignment by reference vs. value:

Example 53 (Assignment by reference vs. value):
Assignment by reference means that the assignment creates a pointer or

alias to the memory location given by another variable while assignment by
value means that the assignment creates a copy of that other variable and
points to that copy. Consider the following lines of code:

>>> a = [1,2,3]

>>> b = a

>>> b[1] = 6.5

where I create a list a, assign the variable b to a, and then replace the oneth
element of b with another value. Because the assignment of variable b to a
is done by reference, not value, my replacement of the oneth element of b
also changes the corresponding element of a. A print of a and b will show
this:

>>> print b

[1, 6.5, 3]

>>> print a

[1, 6.5, 3]

In other words, the b = a assignment did not create a copy of a but creates
Copying

using
deepcopy.

a pointer to the memory location of a and assigns the name b to that pointer.
If what you wanted was for b to be an actual copy of b, you can use the
deepcopy function of the copy module. Thus, this code:
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>>> import copy

>>> a = [1,2,3]

>>> b = copy.deepcopy(a)

>>> b[1] = 6.5

>>> print b

[1, 6.5, 3]

>>> print a

[1, 2, 3]

as you can see, assigns b to a copy of a so any changes in b are separate from
a, and vice versa.

Most datatypes in Python assign by reference. Simple datatypes like
integers, floats, strings, etc. assign by value. Thus, for an integer scalar:

>>> a = 3

>>> b = a

>>> a = 6

>>> print b

3

we see that a change in a does not propagate to the variable b. (By the way,
if you want to find the memory location of an object, you can use the id
function. Two objects that both point to the same memory location should
have the same id value.)

As a final aside: The use of “runlists” is only one way that an object en-
capsulation of atmosphere and ocean models can make those models more
usable and powerful. I wrote a paper in Geosci. Model Dev. (Lin, 2009) that
described such an object encapsulation for an intermediate-level tropical at-
mospheric circulation model and also demonstrated a hybrid Python-Fortran
implementation of an atmospheric model; see http://www.geosci-model-dev.
net/2/1/2009/gmd-2-1-2009.html if you’re interested.

8.5 Summary
There’s no denying it: object-oriented programming (OOP) is hard to learn.
Anecdotal reports suggest even professional programmers need to work on
around three OOP projects before they become proficient in OOP (Curtis,
1995). The dynamic nature of objects, however, permits one to do analysis
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in ways that would be much harder to do using traditional procedural pro-
gramming. In this chapter, we saw three such AOS examples: Simpler han-
dling of missing values and metadata, dynamic variable management, and
dynamic subroutine execution ordering. OOP is not just a way of reorganiz-
ing data and functions, but a way of making more kinds of analysis possible
for scientists to do. While Python works fine as a procedural language—so
you can write Python programs similar to the way you would write Fortran,
IDL, Matlab, etc. programs—the object-oriented aspects of Python provide
some of the greatest benefit for AOS users. It’s a steep learning curve, but
well worth it.
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