Jounny WEI-BING LIN

A Hands-On Introduction to Using
Python in the Atmospheric and
Oceanic Sciences

HTTP://WWW.JOHNNY-LIN.COM/PYINTRO

2012

© 2012 Johnny Wei-Bing Lin.
Some rights reserved. Printed version: ISBN 978-1-300-07616-2. PDF ver-
sions: No ISBNs are assigned.

This work is licensed under the Creative Commons Attribution-Noncom-
mercial-Share Alike 3.0 United States License (CC BY-NC-SA). To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
us or send a letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA.

Who would not want to pay money for this book?: if you do not need
a black-and-white paper copy of the book, a color PDF copy with functional
hyperlinks, have limited funds, or are interested in such a small portion of
the book that it makes no sense to buy the whole thing. The book’s web site
(http://www.johnny-lin.com/pyintro) has available, for free, PDFs of every
chapter as separate files.

Who would want to pay money for this book?: if you want a black-
and-white paper copy of the book, a color PDF copy with functional hy-
perlinks, or you want to help support the author financially. You can buy
a black-and-white paper copy of the book at http://www.johnny-lin.com/
pyintro/buypaper.shtml and a hyperlink-enabled color PDF copy of the book
at http://www.johnny-lin.com/pyintro/buypdf.shtml.

A special appeal to instructors: Instruction at for-profit institutions, as
a commercial use, is not covered under the terms of the CC BY-NC-SA, and
so instructors at those institutions should not make copies of the book for
students beyond copying permitted under Fair Use. Instruction at not-for-
profit institutions is not a commercial use, so instructors may legally make
copies of this book for the students in their classes, under the terms of the CC
BY-NC-SA, so long as no profit is made through the copy and sale (or Fair
Use is not exceeded). However, most instruction at not-for-profit institutions
still involves payment of tuition: lots of people are getting paid for their
contributions. Please consider also paying the author of this book something
for his contribution.

Regardless of whether or not you paid money for your copy of the book,
you are free to use any and all parts of the book under the terms of the CC
BY-NC-SA.

Chapter 7

An Introduction to OOP Using
Python: Part I—Basic Principles
and Syntax

7.1 What is object-oriented programming

Object-oriented programming (OOP), deservedly or not, has something of a
reputation as an obtuse and mysterious way of programming. You may have
heard of it, and even heard that it is a powerful way of writing programs, but
you probably haven’t heard a clear and concise description of how it works
to help you write better AOS programs. Unfortunately, I also cannot give
you a clear and concise description of how OOP works to help you program.

The problem is not that I cannot describe to you what an object is or give
you a definition of OOP, but rather that any description of the mechanics and
use of OOP does not really capture how OOP makes your life easier as a
scientist programmer. It’s like thinking that a description of oil pigments and
poplar surfaces will somehow enable you to “get” how the Mona Lisa works.
For both OOP and art, you can’t describe the forest in terms of the trees.

Really, the only way I know of to convey how OOP enables atmospheric
and oceanic scientists to do better science using a computer is to give you
many examples of its use. So, in this chapter, I’ll do just that. After a brief
description of the mechanics of OOP, we’ll look at some simple examples
and work through some more complex examples, including examples from
the atmospheric and oceanic sciences. Through these examples, I hope to
describe both how to write object-oriented programs as well as why object-
oriented programs work the way they do.

97

Procedural
programs
have data and
functions as
separate
entities.

Real world
objects have
states and
behaviors.

Objects are
made up of
attributes and
methods.

Object
instances are
specific
realizations of
a class.

7.1. WHAT IS OBJECT-ORIENTED PROGRAMMING

7.1.1 Procedural vs. object-oriented programming

One good way of describing something new is to compare it with something
old. Most atmospheric and oceanic scientists have had experience with pro-
cedural programming, so we’ll start there. Procedural programs look at the
world in terms of two entities, “data” and “functions.” In a procedural con-
text, the two entities are separate from each other. A function takes data as
input and returns data as output. Additionally, there’s nothing customizable
about a function with respect to data. As a result, there are no barriers to
using a function on various types of data, even inappropriately.

In the real world, however, we don’t think of things or objects as having
these two features (data and functions) as separate entities. That is, real
world objects are not (usually) merely data nor merely functions. Real world
objects instead have both “state” and “behaviors.” For instance, people have
state (tall, short, etc.) and behavior (playing basketball, running, etc.), often
both at the same time, and, of course, in the same person.

The aim of object-oriented programming is to imitate this in terms of
software, so that “objects” in software have two entities attached to them,
states and behavior. This makes the conceptual leap from real-world to pro-
grams (hopefully) less of a leap and more of a step. As a result, we can more
easily implement ideas into instructions a computer can understand.

7.1.2 The nuts and bolts of objects

What do objects consist of? An object in programming is an entity or “vari-
able” that has two entities attached to it: data and things that act on that data.
The data are called attributes of the object, and the functions attached to the
object that can act on the data are called methods of the object. Importantly,
you design these methods to act on the attributes; they aren’t random func-
tions someone has attached to the object. In contrast, in procedural program-
ming, variables have only one set of data, the value of the variable, with no
functions attached to the variable.

How are objects defined? In the real world, objects are usually exam-
ples or specific realizations of some class or type. For instance, individual
people are specific realizations of the class of human beings. The specific re-
alizations, or instances, differ from one another in details but have the same
pattern. For people, we all have the same general shape, organ structure, etc.
In OQOP, the specific realizations are called object instances, while the com-
mon pattern is called a class. In Python, this common pattern or template is
defined by the class statement.

98

7.2. EXAMPLE OF HOW OBJECTS WORK: STRINGS

So, in summary, objects are made up of attributes and methods, the struc-
ture of a common pattern for a set of objects is called its class, and specific
realizations of that pattern are called “instances of that class.”

Recall that all the Python “variables” we introduced earlier are actually
objects. (In fact, basically everything in Python is an object.) Let’s look at a
number of different Python objects to illustrate how objects work.

7.2 Example of how objects work: Strings

Python strings (like nearly everything else in Python) are objects. Thus, built
into Python, there (implicitly) is a class definition of the string class, and ev-
ery time you create a string, you are using that definition as your template.
That template defines both attributes and methods for all string objects, so
whatever string you’ve created, you have that set of data and functions at-
tached to your string which you can use. Let’s look at a specific case:

Example 45 (Viewing attributes and methods attached to strings and
trying out a few methods):
In the Python interpreter, type in:

a = "hello"

Now type: dir(a). What do you see? Type a.title() and a.upper()
and see what you get.

Solution and discussion: The dir(a) command gives a list of (nearly)
all the attributes and methods attached to the object a, which is the string
"hello". Note that there is more data attached to the object than just the
word “hello”, e.g., the attributes a. __doc__and a.__class__also show up in
the dir listing.

Methods can act on the data in the object. Thus, a.title() applies the
title method to the data of a and returns the string "hello" in title case
(i.e., the first letter of the word capitalized); a.upper () applies the upper
method to the data of a and returns the string all in uppercase. Notice these
methods do not require additional input arguments between the parenthesis,
because all the data needed is already in the object (i.e., "hello").

99

The dir
command
shows an
object’s
attributes and
methods.

Review of
syntax for
objects.

The upper,
isupper, and
count string
methods.

7.3. EXERCISE ON HOW OBJECTS WORK: STRINGS

Let’s do a quick review of syntax for objects. First, to refer to attributes
or methods of an instance, you add a period after the object name and then
put the attribute or method name. To set an attribute, the reference should
be on the lefthand side of the equal sign; the opposite is the case to read an
attribute. Method calls require you to have parentheses after the name, with
or without arguments, just like a function call. Finally, methods can produce
a return value (like a function), act on attributes of the object in-place, or
both.

7.3 Exercise on how objects work: Strings

> Exercise 20 (Strings and how objects work):
In the Python interpreter, type in:

a = 'The rain in Spain.’
Given string a:
1. Create a new string b that is a but all in uppercase.
2. Is a changed when you create b?

3. How would you test to see whether b is in uppercase? That is, how
could you return a boolean that is True or False depending on whe-
ther b is uppercase?

4. How would you calculate the number of occurrences of the letter “n”
in a?

Solution and discussion: Here are my solutions:

1. b = a.upper(Q)

2. No, the upper method’s return value is used to create b; the value of
a is not changed in place.

3. Use the isupper method on the string object, i.e., b.isupper () will
return True or False, accordingly.

4. a.count(’n’)

100

7.4. EXAMPLE OF HOW OBJECTS WORK: ARRAYS

7.4 Example of how objects work: Arrays

While lists have their uses, in scientific computing, arrays are the central
object. Most of our discussion of arrays has focused on functions that create
and act on arrays. Arrays, however, are objects like any other object and have
attributes and methods built-in to them; arrays are more than just a sequence
of numbers. Let’s look at an example list of all the attributes and methods of
an array object:

Example 46 (Examining array object attributes and methods):
In the Python interpreter, type in:

a = N.reshape(N.arange(12), (4,3))

Now type: dir(a). What do you see? Based on their names, and your
understanding of what arrays are, what do you think some of these attributes
and methods do?

Solution and discussion: The dir command should give you a list of a
lot of stuff. I’'m not going to list all the output here but instead will discuss
the output in general terms.

We first notice that there are two types of attribute and method names:
those with double-underscores in front and in back of the name and those
without any pre- or post-pended double-underscores. We consider each type
of name in turn.

A very few double-underscore names sound like data. The a.__doc__
variable is one such attribute and refers to documentation of the object. Most
of the double-underscore names suggest operations on or with arrays (e.g.,
add, div, etc.), which is what they are: Those names are of the methods of the
array object that define what Python will do to your data when the interpreter
sees a “+7, “/”, etc. Thus, if you want to redefine how operators operate
on arrays, you can do so. It is just a matter of redefining that method of the
object.

That being said, I do not, in general, recommend you do so. In Python,
the double-underscore in front means that attribute or method is “very pri-
vate.” (A variable with a single underscore in front is private, but not as
private as a double-underscore variable.) That is to say, it is an attribute or
method that normal users should not access, let alone redefine. Python does
not, however, do much to prevent you from doing so, so advanced users who
need to access or redefine those attributes and methods can do so.

101

Double-
underscore
attribute and
method
names.

Single-
underscore
attribute and
method
names.

Public
attributes and
methods.

How to tell
whether you
are accessing
an attribute or
a method.

7.4. EXAMPLE OF HOW OBJECTS WORK: ARRAYS

The non-double-underscore names are names of “public” attributes and
methods, i.e., attributes and methods normal users are expected to access
and (possibly) redefine. A number of the methods and attributes of a are
duplicates of functions (or the output of functions) that act on arrays (e.g.,
transpose, T), so you can use either the method version or the function
version.

And now let’s look at some examples of accessing and using array object
attributes and methods:

Example 47 (Using array attributes and methods):
In the Python interpreter, type in:

a = N.reshape(N.arange(12), (4,3))
print a.astype(’c’)

print a.shape

print a.cumsum()

print a.T

What do each of the print lines do? Are you accessing an attribute or
method of the array?:

Solution and discussion: The giveaway as to whether we are accessing
attributes or calling methods is whether there are parenthesis after the name;
if not, it’s an attribute, otherwise, it’s a method. Of course, you could type
the name of the method without parentheses following, but then the inter-
preter would just say you specified the method itself, as you did not call the
method:

>>> print a.astype
<built-in method astype of numpy.ndarray object at
0x20d5100>

(I manually added a linebreak in the above screenshot to fit it on the page.)
That is to say, the above syntax prints the method itself; since you can’t
meaningfully print the method itself, Python’s print command just says
“this is a method.”

The astype call produces a version of array a that converts the values
of a into single-character strings. The shape attribute gives the shape of

102

7.5. EXERCISE ON HOW OBJECTS WORK: ARRAYS

the array. The cumsum method returns a flattened version of the array where
each element is the cumulative sum of all the elements before. Finally, the
attribute T is the transpose of the array a.

While it’s nice to have a bunch of array attributes and methods attached to
the array object, in practice, I find I seldom access array attributes and find
it easier to use NumPy functions instead of the corresponding array meth-
ods. One exception with regards to attributes is the dtype.char attribute;
that’s very useful since it tells you the type of the elements of the array (see
Example 30 for more on dtype.char).

7.5 Exercise on how objects work: Arrays

> Exercise 21 (More on using array attributes and methods):

For all these exercises (except for the first one), do not use NumPy mod-
ule functions; only use attributes or methods attached to the arrays. (Do these
in order, since each builds on the preceding commands.)

1. Create a 3 column, 4 row floating point array named a. The array can
have any numerical values you want, as long as all the elements are
not all identical.

2. Create an array b that is a copy of a but is 1-D, not 2-D.
3. Turn b into a 6 column, 2 row array, in place.

4. Create an array ¢ where you round all elements of b to 1 decimal place.

Solution and discussion: Here are array methods that one can use to
accomplish the exercises:

=
)
1l

N.reshape(N.arange(12, dtype="£f’), (3,4))

N
o
I

a.ravel(
3. b.resize((2,6))

4. ¢ = b.round(1)

103

Object
versions of
astype,
shape, and
cumsum.

The
reshape,
ravel,
resize, and
round
function and
methods.

Defining a
class using
class.

Defining
methods and
the self
argument.

The __init__
method.

7.6. DEFINING YOUR OWN CLASS

Remember, methods need to be called or else they don’t do anything;
including the parentheses to specify the calling argument list tells the inter-
preter you're calling the method. In terms of the “output” of the method,
some methods act like a function, returning their output as a return value.
Other methods do their work “in-place,” on the object the method is attached
to; those methods do not typically have a return value.! The resize method
is an example of a method that operates on the data in-place, which is why
there is no equal sign (for assignment) associated with the method call. You
can also make a method operate on an object in-place as well as output a
return value.

7.6 Defining your own class

We had said that all objects are instances of a class, and in the preceding
examples, we looked at what made up string and array instances, which tells
us something about the class definitions for those two kinds of objects. How
would we go about creating our own class definitions?

Class definitions start with class statement. The block following the
class line is the class definition. Within the definition, you refer to the in-
stance of the class as self. So, for example, the instance attribute data
is called self.data in the class definition, and the instance method named
calculateiscalled self.calculate in the class definition (i.e., it is called
by self.calculate(), if it does not take any arguments).

Methods are defined using the def statement. The first argument in any
method is self; this syntax is how Python tells a method “make use of all
the previously defined attributes and methods in this instance.” However,
you never type self when you call the method.

Usually, the first method you define will be the __init__ method. This
method is called whenever you create an instance of the class, and so you
usually put code that handles the arguments present when you create (or
instantiate) an instance of a class and conducts any kind of initialization for
the object instance. The arguments list of __init__ is the list of arguments
passed in to the constructor of the class, which is called when you use the
class name with calling syntax.

Whew! This is all very abstract. We need an example! Here’s one:

IThis statement is not entirely correct. If you do set another variable, by assignment, to
such a method call, that lefthand-side variable will typically be set to None.

104

7.6. DEFINING YOUR OWN CLASS

Example 48 (Example of a class definition for a Book class):

This class provides a template for holding and manipulating information
about a book. The class definition provides a single method (besides the ini-
tialization method) that returns a formatted bibliographic reference for the
book. The code below gives the class definition and then creates two in-
stances of the class (note line continuations are added to fit the code on the

page):

1 |class Book(object):

2 def __init__(self, authorlast, authorfirst, \
3 title, place, publisher, year):
4 self.authorlast = authorlast

5 self.authorfirst = authorfirst

6 self.title = title

7 self.place = place

8 self.publisher = publisher

9 self.year = year

1 def write_bib_entry(self):

12 return self.authorlast \

13 + ’, 7 + self.authorfirst \

14 + 7, 7 + self.title \

s + 7, 7’ + self.place \

16 + ’: ' + self.publisher + ', * \
17 + self.year + .’

v |beauty = Book("Dubay", "Thomas" \

20 , "The Evidential Power of Beauty" \
21 , "San Francisco" \

2 , "Ignatius Press", "1999")

3 |pynut = Book("Martelli", "Alex" \

2 , "Python in a Nutshell" \

25 , "Sebastopol, CA" \

2% , "O’Reilly Media, Inc.", "2003")

Can you explain what each line of code does?
Solution and discussion: Line 1 begins the class definition. By conven- _
The object

tion, class names follow the CapWords convention (capitalize the first letter ject and
of every word). The argument in the class statement is a special object called ipheritance.

105

7.6. DEFINING YOUR OWN CLASS

object. This has to do with the OOP idea of inheritance, which is a topic
beyond the scope of this book. Suffice it to say that classes you create can in-
herit or incorporate attributes and methods from other classes. Base classes
(class that do not depend on other classes) inherit from object, a special
object in Python that provides the foundational tools for classes.

Notice how attributes and methods are defined, set, and used in the class
definition: Periods separate the instance name self from the attribute and
method name. So the instance attribute title is called self.title in the
class definition. When you actually create an instance, the instance name is
the name of the object (e.g., beauty, pynut), so the instance attribute title
of the instance beauty is referred to as beauty.title, and every instance
attribute is separate from every other instance attribute (e.g., beauty.title
and pynut.title are separate variables, not aliases for one another).

Thus, in lines 4-9, I assign each of the positional input parameters in the
def __init__line to an instance attribute of the same name. Once assigned,
these attributes can be used anywhere in the class definition by reference to
self, as in the definition of the write_bib_entry method.

Speaking of which, note that the write bib_entry method is called
with no input parameters, but in the class definition in lines 11-17, T still
need to provide it with self as an input. That way, the method definition is
able to make use of all the attributes and methods attached to self.

In lines 19-22, I create an instance beauty of the Book class. Note
how the arguments that are passed in are the same arguments as in the
def __init__ argument list. In the last four lines, I create another instance
of the Book class.

(The code of this example is in course_files/code _files in a file called bib-

liog.py.)

Now that we’ve seen an example of defining a class, let’s look at an
example of using instances of the Book class to help us better understand
what this class does:

Example 49 (Using instances of Book):
Consider the Book definition given in Example 48. Here are some ques-
tions to test your understanding of what it does:

1. How would you print out the author attribute of the pynut instance
(at the interpreter, after running the file)?

106

7.7. EXERCISE ON DEFINING YOUR OWN CLASS

2. If you type print beauty.write_bib_entry() at the interpreter
(after running the file), what will happen?

3. How would you change the publication year for the beauty book to
"2010"?

Solution and discussion: My answers:

1. Type: print pynut.author. Remember that once an instance of
Book is created, the attributes are attached to the actual instance of the
class, not to self. The only time self exists is in the class definition.

2. You will print out the the bibliography formatted version of the infor-
mation in beauty.

3. Type: beauty.year = "2010". Remember that you can change in-
stance attributes of classes you have designed just like you can change
instance attributes of any class; just use assignment. (There is also a
function called setattr that you can use to assign attributes. I'1l talk
about setattr in Section 8.2.)

7.7 Exercise on defining your own class

> Exercise 22 (The Book class and creating an Article class):
Here are the tasks:

1. Create another instance of the Book class using book of your choosing
(or make up a book). Execute the write bib_entry method for that
instance to check if it looks like what you wanted.

2. Add a method make_authoryear to the class definition that will cre-
ate an attribute authoryear and will set that attribute to a string that
has the last name of the author and then the year in parenthesis. For
instance, for the beauty instance, this method will set authoryear to
"Dubay (1999)’. The method should not have a return statement.

3. Create an Article class that manages information about articles. It
will be very similar to the class definition for Book, except publisher

107

7.7. EXERCISE ON DEFINING YOUR OWN CLASS

and place information will be unneeded and article title, volume num-
ber, and pages will be needed. Make sure this class also has the meth-
ods write_bib_entry and make_authoryear.

Solution and discussion: Here are my answers:

1. Here’s another instance of Book, with a call to the write_bib_entry
method:

madeup = Book("Doe", "John", "Good Book",
"Chicago", "Me Press", "2012")
print madeup.write_bib_entry()

This code will print the following to the screen:
Doe, John, Good Book, Chicago: Me Press, 2012.

2. The entire Book class definition, with the new method (and line con-
tinuations added to fit the code on the page), is:

1 |class Book(object):

2 def __init__(self, authorlast, authorfirst, \
3 title, place, publisher, year):
4 self.authorlast = authorlast

5 self.authorfirst = authorfirst

6 self.title = title

7 self.place = place

8 self.publisher = publisher

9 self.year = year

1 def make_authoryear(self):
12 self.authoryear = self.authorlast \
13 + (" + self.year +’)’

s def write_bib_entry(self):

16 return self.authorlast \

17 + 7, 7 4+ self.authorfirst \

18 + 7, 7 + self.title \

19 + 7, 7’ + self.place \

20 + ’: ' + self.publisher + ', ’ \
21 + self.year + .’

108

7.7. EXERCISE ON DEFINING YOUR OWN CLASS

20

21

22

23

24

The new portion is lines 11-13. None of the rest of the class definition
needs to change.

The class definition for Article (with line continuations added to fit
the code on the page) is:

class Article(object):
def __init__(self, authorlast, authorfirst, \

articletitle, journaltitle, \
volume, pages, year):

self.authorlast = authorlast

self.authorfirst = authorfirst

self.articletitle = articletitle

self.journaltitle = journaltitle

self.volume = volume

self.pages = pages

self.year = year

def make_authoryear(self):
self.authoryear = self.authorlast \
+ 7 (C + self.year +’)’

def write_bib_entry(self):
return self.authorlast \

+ 7, 7 4+ self.authorfirst \

+ 7 (C + self.year + "): 7\

+ "’ + self.articletitle + ’," 7 \
+ self.journaltitle + ', ’ \
+
+

self.volume + 7, ’ \

self.pages +

This code looks nearly the same as that for the Book class, with these
exceptions: some attributes differ between the two classes (books, for
instance, do not have journal titles) and the method write bib_entry
is different between the two classes (to accommodate the different for-
matting between article and book bibliography entries). See bibliog.py
in course_files/code _files for the code.

109

Summary of
introduction

to OOP.

7.8. MAKING CLASSES WORK TOGETHER TO MAKE COMPLEX
PROGRAMMING EASIER

7.8 Making classes work together to make com-
plex programming easier

So in our introduction to object-oriented programming (OOP), we found out
that objects hold attributes (data) and methods (functions that act on data)
together in one related entity. Realizations of an object are called instances.
The template or form for an object is called a class, so realizations are in-
stances of a class. In Python, the class statement defines the template for
object instances. In the class statement, instances of the class are called
self. Once a real instance of the class is created, the instance (object) name
itself is “substituted” in for self.

But so what? It seems like classes are just a different way of organizing
data and functions: Instead of putting them in libraries (or modules), you put
them in a class. If you’re thinking that this isn’t that big of a deal, I would
agree that it isn’t a big deal, if all you do in a program is write a single class
with a single instance of that class; in that case, OOP does not buy you very
much.

The real power of OOP, rather, comes when objects are used in con-
junction with other classes. By properly designing your set of classes, the
object-oriented structure can make your code much simpler to write and un-
derstand, easier to debug, and less prone to error. In the remaining sections
of the chapter, we’ll look at two case studies illustrating the use of OOP in
this manner. The first case study extends our Book and Article classes by
examining the more general program of how to create a bibliography. In the
second case study, we consider how to create a class for geosciences work
that “manages” a surface domain.

7.9 Case study 1: The bibliography example

The Book and Article classes we wrote earlier manage information related
to books and articles. In this case study, we make use of Book and Article
to help us implement one common use of book and article information: the
creation of a bibliography. In particular, we’ll write a Bibliography class
that will manage a bibliography, given instances of Book and Article ob-
jects.

7.9.1 Structuring the Bibliography class

Since a bibliography consists of a list of (usually formatted) book and article
entries, we will want our Bibliography class to contain such a list. Thus,

110

7.9. CASE STUDY I1: THE BIBLIOGRAPHY EXAMPLE

the Bibliography class has, as its main attribute, a list of entries which
are instances of Book and Article classes. Remember, instances of Book
and Article can be thought of as books and articles; the instances are the
“objects” that specific books and articles are.

Next, we write methods for Bibliography that can manipulate the list
of Book and Article instances. To that end, the first two methods we
write for Bibliography will do the following: initialize an instance of the
class; rearrange the list alphabetically based upon last name then first name.
The initialization method is called __init__ (as always), and the rearranging
method will be called sort_entries_alpha. Here is the code:

1 |import operator

2

3 |class Bibliography(object):

4 def __init__(self, entrieslist):

5 self.entrieslist = entrieslist

6

7 def sort_entries_alpha(self):

8 tmp = sorted(self.entrieslist,

9 key=operator.attrgetter(’authorlast’,
10 “authorfirst’))
1 self.entrieslist = tmp

12 del tmp

Let’s talk about what this code does. In the __init__ method, there is
only a single argument, entrieslist. This is the list of Book and Article
instances that are being passed into an instance of the Bibliography class.
The __init__ method assigns the entrieslist argument to an attribute of
the same name.

Lines 7—-12 define the sort_entries_alpha method, which sorts the
entrieslist attribute and replaces the old entrieslist attribute with the
sorted version. The method uses the built-in sorted function, which takes a
keyword parameter key that gives the key used for sorting the argument of
sorted.

How is that key generated? The attrgetter function, which is part of
the operator module, gets the attributes of the names listed as arguments
to attrgetter out of the elements of the item being sorted. (Note that the
attribute names passed into attrgetter are strings, and thus you refer to the
attributes of interest by their string names, not by typing in their names. This
makes the program much easier to write.) In our example, attrgetter has
two arguments; sorted indexes self.entrieslist by the attrgetter’s
first argument attribute name first then the second.

111

The
attrgetter
function and
sorted.

Basic testing
of programs.

Comparing
OOP vs.
procedural for
a sorting
example.

7.9. CASE STUDY I1: THE BIBLIOGRAPHY EXAMPLE

Note that at the end of the sort_entries_alpha method definition, I
use the del command to make sure that tmp disappears. I need to do this
because lists are mutable, and Python assignment is by reference not value
(see p. 140 for more discussion on reference vs. value). If I do not remove
tmp, the tmp might float around as a reference to the entrieslist attribute;
it shouldn’t, but I'm paranoid so I explicitly deallocate tmp to make sure.

Some final comments: First, if you would like to read more on sort-
ing in Python, please see http://wiki.python.org/moin/HowTo/Sorting. The
sorted function is very versatile.

Second, there are some diagnostics at the end of bibliog.py that are run if

you type:
python bibliog.py

from the operating system command line. This is one way of writing a very
basic test to make sure that a module works. (Python has a solid unit testing
framework in the form of the unittest module, if you’re interested in some-
thing more robust.) These diagnostics, however, are not implemented if you
import bibliog.py as a module. This is due to the conditional:

if _name__ == ’_main_ _’:

which is true only if the module is being run as a main program, i.e., by
the python command. If you import the module for use in another mod-
ule, by using import, the variable __name__ will not have the string value
’_main__’, and the diagnostics will not execute.

7.9.2 What sort_entries_alpha illustrates about OOP

Let’s pause to think for a moment about the method sort_entries_alpha.
What have we just done? First, we sorted a list of items that are totally
differently structured from each other based on two shared types of data (at-
tributes). Second, we did the sort using a sorting function that does not
care about the details of the items being sorted, only that they had these
two shared types of data. In other words, the sorting function doesn’t care
about the source type (e.g., article, book), only that all source types have the
attributes authorlast and authorfirst.

This doesn’t seem that big a deal, but think about how we would have had
to do it in traditional procedural programming. First, each instance would
have been an array, with a label of what kind of source it is, for instance:

nature_array = ["article", "Smith", "Jane",
"My Nobel prize-winning paper",
"Nature", "481", "234-236", "2012"]

112

7.9. CASE STUDY I1: THE BIBLIOGRAPHY EXAMPLE

The procedural sorting function you’d write would need know which el-
ements you want to sort with (here the second and third elements of the
array). But the index for every array of data would potentially be different,
depending on where in the array that data is stored for that source type. Thus,
in your sorting function, you’d need to run multiple if tests (based on the
source type) to extract the correct field in the array to sort by. But, if you
changed the key you’re sorting by (e.g., from the author’s name to the date
of publication), you would have to change the element index you’re sorting
against. This means manually changing the code of the if tests in your
sorting function.

It’s easy to make such a manual code change and test that the change
works, if you only have a few source types (e.g., articles and books), but
what if you have tens or hundreds of source types? What a nightmare! And
as you make all those code changes, think of the number of possible bugs
you may introduce just from keystroke errors alone! But in object-oriented
programming, you can switch the sorting key at will and have an infinite
number of source types without any additional code changes (e.g., no if
tests to change). This is the power of OOP over procedural programming:
code structured using an OOP framework naturally results in programs that
are much more flexible and extensible, resulting in dramatically fewer bugs.

7.9.3 Exercise in extending the Bibliography class

> Exercise 23 (Writing out an alphabetically sorted bibliography):

Since we programmed Book and Article withwrite bib_entry meth-
ods, let’s take advantage of that. Write a method write bibliog_alpha for
the Bibliography class we just created that actually writes out a bibliogra-
phy (as a string) with blank lines between the entries, with the entries sorted
alphabetically by author name. The bibliography should be returned using a
return statement in the method. Some hints:

e Elements of a list do not have to all have the same type.
e for loops do not only loop through lists of numbers but through any
iterable. This includes lists of any sort, including lists of objects (such

as Book and Article instances.

e Strings are immutable, so you cannot append to an existing string. In-
stead, do a reassignment combined with concatenation (i.e., a=a+b).

113

7.9. CASE STUDY I1: THE BIBLIOGRAPHY EXAMPLE

e To initialize a string, in order to grow it in concatenation steps such
as in a for loop, start by setting the string variable to an empty string
(which is just * *).

Solution and discussion: Here is the solution for the entire class, with
the new method included:

1 |import operator

2

3 |class Bibliography(object):

4 def __init__(self, entrieslist):

5 self.entrieslist = entrieslist

6

7 def sort_entries_alpha(self):

8 tmp = sorted(self.entrieslist,

9 key=operator.attrgetter(’authorlast’,

10 ’authorfirst’))
i self.entrieslist = tmp

12 del tmp

13

14 def write_bibliog_alpha(self):

Is self.sort_entries_alpha()

16 output = '’

17 for ientry in self.entrieslist:

18 output = output \

19 + ientry.write_bib_entry() + ’\n\n’
20 return output[:-2]

The only code that has changed compared to what we had previously is
the write_bibliog_alpha method; let’s talk about what it does. Line 14
defines the method; because self is the only argument, the method is called
with an empty argument list. The next line calls the sort_entries_alpha
method to make sure the list that is stored in the entrieslist attribute
is alphabetized. Next, we initialize the output string output as an empty
string. When the “+” operator is used, Python will then use string concate-
nation on it. Lines 17-19 run a for loop to go through all elements in the
list entrieslist. The output of write bib_entry is added one entry at a
time, along with two linebreaks after it. Finally, the entire string is output ex-
cept for the final two linebreaks. (Remember that strings can be manipulated
using list slicing syntax.)

114

7.10. CASE STUDY 2: CREATING A CLASS FOR GEOSCIENCES

WORK—SURFACE DOMAIN MANAGEMENT

7.9.4 What the write bibliog alpha method illustrates
about OOP

Here too, let’s ask how would we have written a function that wrote out an

alphabetized bibliography in procedural programming? Probably something
like the following sketch:

def write_bibliog_function(arrayofentries):
[open output file]

for i in xrange(len(arrayofentries)):
ientryarray = arrayofentries[i]
if ientryarray[0] = "article":
[call function for bibliography entry
for an article, and save to output file]
elif ientryarray[0] == "book™":
[call function for bibliography entry
for an book, and save to output file]

[...]

[close output file]

This solution sketch illustrates how in procedural programming we are
stuck writing if tests in the bibliography writing function to make sure we
format each source entry correctly, depending on source type (e.g., article,
book). In fact, for every function that deals with multiple source types, we
need this tree of if tests. If you introduce another source type, you need to
add another if test in all functions where you have this testing tree. This is
a recipe for disaster: It is exceedingly easy to inadvertently add an if test in
one function but forget to do so in another function, etc.

In contrast, with objects, adding another source type requires no code
changes or additions. The new source type just needs a write_bib_entry
method defined for it. And, since methods are designed to work with the
attributes of their class, this method will be tailor-made for its data. So much
easier!

7.10 Case study 2: Creating a class for geoscien-
ces work—Surface domain management

I think the bibliography example in Section 7.9 does a good job of illustrating
what object-oriented programming gives you that procedural programming

115

7.10. CASE STUDY 2: CREATING A CLASS FOR GEOSCIENCES
WORK—SURFACE DOMAIN MANAGEMENT

cannot. | also like the example because all of us have had to write a bibliog-
raphy, and the idea of “sources” (books, articles) very nicely lends itself to
being thought of as an “object.” But can the OOP way of thinking help us
in decomposing a geosciences problem? In this section, we consider a class
for managing surface domains (i.e., a latitude-longitude domain). I present
the task of defining the class as an exercise and give two possible solutions.
The exercise and solutions, while valuable in and of themselves, offer a nice
illustration of how OOP enables atmospheric and oceanic scientists to write
more concise but flexible code for handling scientific calculations.

THIS REVISION IS MUCH (?
BETTER THAN YOUR 27TH-)"
WE'LL JUST SEND IT OUT FOR
ANOTHER ROUND OF PEER
REVIEW ...

X-NC-SA 3.0Mlicense

Licensed under a Creative Commons B

L
£
<]
5]

K
£
15}
o

£

ES
c
c

<

S,
g

Science Publication Hell

> Exercise 24 (Defining a SurfaceDomain class):

Define a class SurfaceDomain that describes surface domain instances.
The domain is a land or ocean surface region whose spatial extent is de-
scribed by a latitude-longitude grid. The class is instantiated when you pro-
vide a vector of longitudes and latitudes; the surface domain is a regular
grid based on these vectors. Surface parameters (e.g., elevation, tempera-
ture, roughness, etc.) can then be given as instance attributes. The quantities
are given on the domain grid.

In addition, in the class definition, provide an instantiation method that
saves the input longitude and latitude vectors as appropriately named at-
tributes and creates 2-D arrays of the shape of the domain grid which have
the longitude and latitude values at each point and saves them as private at-
tributes (i.e., their names begin with a single underscore).

116

7.10. CASE STUDY 2: CREATING A CLASS FOR GEOSCIENCES
WORK—SURFACE DOMAIN MANAGEMENT

Hint: An example may help with regards to what I'm asking for with
respect to the 2-D arrays. If lon=N.arange(5) and lat=N.arange(4),
then the _lonall instance attribute would be:

[[06123
0123
(01234
[0 123 4]]

4]
4]
]

and the _latall instance attribute would be:

[[® 0 0 0 0]
[11111]
[2 222 2]
[3 33 3 3]]

Solution and discussion: The two solutions described below (with the
second solution commented out) are in course_files/code files in the file sur-
face_domain.py). Here’s the solution using for loops:

import numpy as N

class SurfaceDomain(object):
def __init__(self, lon, lat):
self.lon = N.array(lon)
self.lat = N.array(lat)

shape2d = (N.size(self.lat), N.size(self.lon))
self._lonall = N.zeros(shape2d, dtype="£f’)

=T T - Y o S

10 self._latall = N.zeros(shape2d, dtype="£")
1 for i in xrange(shape2d[0]):

12 for j in xrange(shape2d[1]):

13 self. _lonall[i,j] = self.lon[j]

14 self. _latall[i,j] = self.lat[i]

Lines 5-6 guarantee that lon and lat are NumPy arrays, in case lists or
tuples are passed in.

And here’s a simpler and faster solution using the meshgrid function in U
NumPy instead of the for loops:

sing
meshgrid.

117

Comparing
OOP vs.
procedural for
a subdomain
management
example.

7.10. CASE STUDY 2: CREATING A CLASS FOR GEOSCIENCES
WORK—SURFACE DOMAIN MANAGEMENT

1 |import numpy as N

2

3 |class SurfaceDomain(object):

4 def __init__(self, lon, lat):

5 self.lon = N.array(lon)

6 self.lat = N.array(lat)

7 [xall, yall] = N.meshgrid(self.lon, self.lat)
8 self._lonall = xall

9 self._latall = yall

10 del xall, yall

So, what does this SurfaceDomain class illustrate about OOP applied to
the geosciences? Pretend you have multiple SurfaceDomain instances that
you want to communicate to each other, where the bounds of one are taken
from (or interpolated with) the bounds of another, e.g., calculations for each
domain instance are farmed out to a separate processor, and you’re stitching
domains together:

Overlapping boundaries

7

surfaceDomain instance

In the above schematic, gray areas are SurfaceDomain instances and the
thick, dark lines are the overlapping boundaries between the domain in-
stances.

In procedural programming, to manage this set of overlapping domains,
you might create a grand domain encompassing all points in all the domains
to make an index that keeps track of which domains abut one another. The
index records who contributes data to these boundary regions. Alternately,
you might create a function that processes only the neighboring domains, but
this function will be called from a scope that has access to all the domains
(e.g., via a common block).

But, to manage this set of overlapping domains, you don’t really need
such a global view nor access to all domains. In fact, a global index or a
common block means that if you change your domain layout, you have to
hand-code a change to your index/common block. Rather, what you actually
need is only to be able to interact with your neighbor. So why not just write a
method that takes your neighboring SurfaceDomain instances as arguments

118

7.11. SUMMARY

and alters the boundaries accordingly? That is, why not add the following to
the SurfaceDomain class definition:?

class SurfaceDomain(object):
[...]
def syncbounds(self, northobj, southobj,
eastobj, westobj):

Such a method will propagate to all SurfaceDomain instances automat-
ically, once written in the class definition. Thus, you only have to write one
(relatively) small piece of code that can then affect any number of layouts
of SurfaceDomain instances. Again, object-oriented programming enables
you to push the level at which you code to solve a problem down to a lower-
level than procedural programming easily allows. As a result, you can write
smaller, better tested bit of code; this makes your code more robust and flex-
ible.

7.11 Summary

You could, I think, fairly summarize this chapter as addressing one big ques-
tion: Why should an atmospheric or oceanic scientist bother with object-
oriented programming? In answer, I suggest two reasons. First, code writ-
ten using OOP is less prone to error. OOP enables you to mostly eliminate
lengthy argument lists, and it is much more difficult for a function to acciden-
tally process data it should not process. Additionally, OOP deals with long
series of conditional tests much more compactly; there is no need to duplicate
if tests in multiple places. Finally, objects enable you to test smaller pieces
of your program (e.g., individual attributes and methods), which makes your
tests more productive and effective.

Second, programs written using OOP are more easily extended. New
cases are easily added by creating new classes that have the interface meth-
ods defined for them. Additional functionality is also easily added by just
adding new methods/attributes. Finally, any changes to class definitions au-
tomatically propagate to all instances of the class.

For short, quick-and-dirty programs, procedural programming is still the
better option; there is no reason to spend the time coding the additional OOP
infrastructure. But for many atmospheric and oceanic sciences applications,

2Christian Dieterich’s PyOM pythonized OM3 ocean model does a similar kind of
domain-splitting handling in Python.

119

Procedural
for short
programs;
OOP for
everything
else.

7.11. SUMMARY

things can very quickly become complex. As soon as that happens, the object
decomposition can really help. Here’s the rule-of-thumb I use: For a one-
off, short program, I write it procedurally, but for any program I may extend
someday (even if it is a tentative “may”’), I write it using objects.

120

