
JohnnyWei-Bing Lin

A Hands-On Introduction to Using
Python in the Atmospheric and

Oceanic Sciences

http://www.johnny-lin.com/pyintro

2012

c© 2012 Johnny Wei-Bing Lin.
Some rights reserved. Printed version: ISBN 978-1-300-07616-2. PDF ver-
sions: No ISBNs are assigned.

This work is licensed under the Creative Commons Attribution-Noncom-
mercial-Share Alike 3.0 United States License (CC BY-NC-SA). To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

us or send a letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA.

Who would not want to pay money for this book?: if you do not need
a black-and-white paper copy of the book, a color PDF copy with functional
hyperlinks, have limited funds, or are interested in such a small portion of
the book that it makes no sense to buy the whole thing. The book’s web site
(http://www.johnny-lin.com/pyintro) has available, for free, PDFs of every
chapter as separate files.

Who would want to pay money for this book?: if you want a black-
and-white paper copy of the book, a color PDF copy with functional hy-
perlinks, or you want to help support the author financially. You can buy
a black-and-white paper copy of the book at http://www.johnny-lin.com/

pyintro/buypaper.shtml and a hyperlink-enabled color PDF copy of the book
at http://www.johnny-lin.com/pyintro/buypdf.shtml.

A special appeal to instructors: Instruction at for-profit institutions, as
a commercial use, is not covered under the terms of the CC BY-NC-SA, and
so instructors at those institutions should not make copies of the book for
students beyond copying permitted under Fair Use. Instruction at not-for-
profit institutions is not a commercial use, so instructors may legally make
copies of this book for the students in their classes, under the terms of the CC
BY-NC-SA, so long as no profit is made through the copy and sale (or Fair
Use is not exceeded). However, most instruction at not-for-profit institutions
still involves payment of tuition: lots of people are getting paid for their
contributions. Please consider also paying the author of this book something
for his contribution.

Regardless of whether or not you paid money for your copy of the book,
you are free to use any and all parts of the book under the terms of the CC
BY-NC-SA.

Chapter 5

File Input and Output

The atmospheric and oceanic sciences (AOS) are “data” intensive fields,
whether data refers to observations or model output. Most of the analysis
we do involve datasets, and so facilities for file input/output (i/o) are critical.
Fortunately, Python has very robust facilities for file i/o. In this chapter, we
will sort-of touch on those facilities.

Why do I say “sort-of?”: because I am in somewhat of a quandary when
it comes to talking about file input/output. On the one hand, I want to show
you how to use routines that you will want to use for your own research and
analysis. On the other hand, because this book is an introduction to Python,
I want to show you the fundamentals of how to do things in the language. In
Python, the most robust file i/o packages, while not difficult to use, are still
rather conceptually advanced.1 The introduction of these packages might
distract from the larger goal of showing you the fundamentals. As a com-
promise, this chapter will describe ways of handling file i/o that, while not
the most efficient or optimized, nonetheless will work for many (if not most)
AOS uses and which illustrate basic methods in using Python (this is partic-
ularly true when I discuss handling strings). In the summary in Section 5.4,
I will briefly describe additional packages for file i/o that you may want to
look into.

In this chapter we will look at input/output to and from text files and
netCDF files. But before we do so, I want to make some comments about file
objects, which are foundational to how Python interfaces with a file, whether
text, netCDF, or another format.

1An example is the PyTables package, a really great package for large datasets that
utilizes some very advanced optimization methods.

73

5.1. FILE OBJECTS

5.1 File objects

A file object is a “variable” that represents the file to Python. This is a subtle
File objects

represent the
file to the

interpreter.

but real difference with procedural languages. For instance, in Fortran, you
use functions to operate on a file and unit numbers to specify the file you’re
operating on (e.g., read(3,*), where 3 is the unit number that represents
the file to Fortran). In Python, you use methods attached to file objects to
operate on the file. (More on objects is in Ch. 7.)

File objects are created like any other object in Python, that is, by as-
signment. For text files, you instantiate a file object with the built-in open

Creating file
objects using

the open
statement.

statement:

fileobj = open(’foo.txt’, ’r’)

The first argument in the open statement gives the filename. The second
argument sets the mode for the file: ’r’ for reading-only from the file, ’w’
for writing a file, and ’a’ for appending to the file.

Python has a number of modules available for handling netCDF files;
for the netCDF package we’ll be using in this chapter, there is a different

Creating
netCDF file

objects.

command to create file objects that correspond to the netCDF file, but the
syntax is similar:

fileobj = S.NetCDFFile(’air.mon.mean.nc’,

mode=’r’)

As with open, the string ’r’ means read, etc. In Section 5.3, when we
discuss netCDF input/output in more detail, I’ll explain the rest of the syntax
of the above file object creation statement. For now, I just want to point out
that the file object fileobj is created by assignment to the return of the
S.NetCDFFile command.

One method common to both the text and netCDF file objects we’ll be
The close

method of file
objects.

looking at is the close method, which, as you might expect, closes the file
object. Thus, to close a file object fileobj, execute:

fileobj.close()

5.2 Text input/output

Once you’ve created the text file object, you can use various methods at-
tached to the file object to interact with the file.

74

5.2. TEXT INPUT/OUTPUT

5.2.1 Text input/output: Reading a file

To read one line from the file, use the readline method:

aline = fileobj.readline()

Because the file object is connected to a text file, aline will be a string.
Note that aline contains the newline character, because each line in a file is
terminated by the newline character.

To read the rest of a file that you already started reading, or to read an
entire file you haven’t started reading, and then put the read contents into a

The
readlines

method.

list, use the readlines method:

contents = fileobj.readlines()

Here, contents is a list of strings, and each element in contents is a line
in the fileobj file. Each element also contains the newline character, from
the end of each line in the file.

Note that the variable names aline and contents are not special; use
whatever variable name you would like to hold the strings you are reading in
from the text file.

5.2.2 Text input/output: Writing a file

To write a string to the file that is defined by the file object fileobj, use the
write method attached to the file object:

fileobj.write(astr)

Here, astr is the string you want to write to the file. Note that a newline
character is not automatically written to the file after the string is written. If
you want a newline character to be added, you have to append it to the string
prior to writing (e.g., astr+’\n’).

To write a list of strings to the file, use the writelines method:
The
writelines

method;
write and
writelines

do not write
newline by
default.

fileobj.writelines(contents)

Here, contents is a list of strings, and, again, a newline character is not
automatically written after the string (so you have to explicitly add it if you
want it written to the file).

75

5.2. TEXT INPUT/OUTPUT

5.2.3 Text input/output: Processing file contents

Let’s say you’ve read-in the contents of a file from the file and now have
the file contents as a list of strings. How do you do things with them? In
particular, how do you turn them into numbers (or arrays of numbers) that
you can analyze? Python has a host of string manipulation methods, built-in
to string variables (a.k.a., objects), which are ideal for dealing with contents
from text files. We will mention only a few of these methods.

The split method of a string object takes a string and breaks it into a
The string

method
split.

list using a separator. For instance:

a = ’3.4 2.1 -2.6’

print a.split(’ ’)

[’3.4’, ’2.1’, ’-2.6’]

will take the string a, look for a blank space (which is passed in as the argu-
ment to split, and use that blank space as the delimiter or separator with
which one can split up the string.

The join method takes a separator string and puts it between items of a
The string

method join. list (or an array) of strings. For instance:

a = [’hello’, ’there’, ’everyone’]

’\t’.join(a)

’hello\tthere\teveryone’

will take the list of strings a and concatenate these elements together, using
the tab string (’\t’) to separate two elements from each other. (For a short
list of some special strings, see p. 19.)

Finally, once we have the strings we desire, we can convert them to nu-
Converting

strings to
numerical

types.

merical types in order to make calculations. Here are two ways of doing
so:

• If you loop through a list of strings, you can use the float and int
functions on the string to get a number. For instance:

import numpy as N

anum = N.zeros(len(a), ’d’)

for i in xrange(len(a)):

anum[i] = float(a[i])

76

5.2. TEXT INPUT/OUTPUT

takes a list of strings a and turns it into a NumPy array of double-
precision floating point numbers anum.2

• If you make the list of strings a NumPy array of strings, you can use
the astypemethod for type conversion to floating point or integer. For
instance:

anum = N.array(a).astype(’d’)

takes a list of strings a, converts it from a list to an array of strings
using the array function, and turns that array of strings into an ar-
ray of double-precision floating point numbers anum using the astype
method of the array of strings.

A gotcha: Different operating systems may set the end-of-line character
Different
OSes have
different
end-of-line
characters.

to something besides ’\n’. Make sure you know what your text file uses.
(For instance, MS-DOS uses ’\r\n’, which is a carriage return followed
by a line feed.) By the way, Python has a platform independent way of
referring to the end-of-line character: the attribute linesep in the module
os. If you write your program using that variable, instead of hard-coding in
’\n’, your program will write out the specific end-of-line character for the
system you’re running on.

Example 41 (Writing and reading a single column file):
Take the following list of temperatures T:

T = [273.4, 265.5, 277.7, 285.5]

write it to a file one-col temp.txt, then read the file back in.

Solution and discussion: This code will do the trick (note I use comment
lines to help guide the reader):

2Note that you can specify the array dtype without actually writing the dtype key-
word; NumPy array constructors like zeros will understand a typecode given as the second
positional input parameter.

77

5.2. TEXT INPUT/OUTPUT

import numpy as N

outputstr = [’\n’]*len(T) #- Convert to string

for i in xrange(len(T)): # and add newlines

outputstr[i] = \

str(T[i]) + outputstr[i]

fileout = open(’one-col_temp.txt’, ’w’) #- Write out

fileout.writelines(outputstr) # to the

fileout.close() # file

filein = open(’one-col_temp.txt’, ’r’) #- Read in

inputstr = filein.readlines() # from the

filein.close() # file

Tnew = N.zeros(len(inputstr), ’f’) #- Convert

for i in xrange(len(inputstr)): # string to

Tnew[i] = float(inputstr[i]) # numbers

Note you don’t have to strip off the newline character before converting
the number to floating point using float.

A caveat about reading text files: In the beginning of this chapter, I said
I would talk about file reading in a way that teaches the fundamentals of
Python, not in a way that gives you the most efficient solution to file i/o for
AOS applications. This is particularly true for what I’ve just told you about
reading text files. String methods, while powerful, are probably too low-
level to bother with every time you want to read a text file; you’d expect
someone somewhere has already written a function that automatically pro-
cesses text formats typically found in AOS data files. Indeed, this is the case:
see the asciiread function in PyNGL,3 the readAscii function in the Cli-
mate Data Analysis Tools (CDAT),4 and the SciPy Cookbook i/o page5 for
examples.

3http://www.pyngl.ucar.edu/Functions/Ngl.asciiread.shtml (accessed August 16, 2012).
4http://www2-pcmdi.llnl.gov/cdat/tips and tricks/file IO/reading ASCII.html (accessed

August 16, 2012).
5http://www.scipy.org/Cookbook/InputOutput (accessed August 16, 2012).

78

5.3. NETCDF INPUT/OUTPUT

5.2.4 Exercise to read a multi-column text file

� Exercise 16 (Reading in a multi-column text file):
You will find the file two-col rad sine.txt in the datasets sub-directory of

course files. Write code to read the two columns of data in that file into two
arrays, one for angle in radians (column 1) and the other for the sine of the
angle (column 2). (The course files directory of files is available online at
the book’s website. See p. viii for details on obtaining the files. Alternately,
feel free to use a text data file of your own.)

The two columns of two-col rad sine.txt are separated by tabs. The file’s
newline character is just ’\n’ (though this isn’t something you’ll need to
know to do this exercise). The file has no headers.

Solution and discussion: Here’s my solution:

import numpy as N

fileobj = open(’two-col_rad_sine.txt’, ’r’)

data_str = fileobj.readlines()

fileobj.close()

radians = N.zeros(len(data_str), ’f’)

sines = N.zeros(len(data_str), ’f’)

for i in xrange(len(data_str)):

split_istr = data_str[i].split(’\t’)

radians[i] = float(split_istr[0])

sines[i] = float(split_istr[1])

The array radians holds the angles (in radians) and the array sines holds
the sine of those angles. Note that the above code does not need to know
ahead of time how many lines are in the file; all the lines will be read in by
the readlines method call.

5.3 NetCDF input/output

NetCDF is a platform-independent binary file format that facilitates the stor-
age and sharing of data along with its metadata. Versions of the tools needed
to read and write the format are available on practically every operating sys-
tem and in every major language used in the atmospheric and oceanic sci-
ences.

79

5.3. NETCDF INPUT/OUTPUT

Before discussing how to do netCDF i/o in Python, let’s briefly review the
structure of netCDF. There are four general types of parameters in a netCDF
file: global attributes, variables, variable attributes, and dimensions. Global
attributes are usually strings that describe the file as a whole, e.g., a title, who

The structure
of netCDF

files.

created it, what standards it follows, etc.6 Variables are the entities that hold
data. These include both the data-proper (e.g., temperature, meridional wind,
etc.), the domain the data is defined on (delineated by the dimensions), and
metadata about the data (e.g., units). Variable attributes store the metadata
associated with a variable. Dimensions define a domain for the data-proper,
but they also have values of their own (e.g., latitude values, longitude values,
etc.), and thus you usually create variables for each dimension that are the
same name as the dimension.7

As an example of a set of variables and dimensions for a netCDF file,
consider the case where you have a timeseries of surface temperature for a
latitude-longitude grid. For such a dataset, you would define “lat”, “lon”,
and “time” dimensions and corresponding variables for each of those dimen-
sions. The variable “lat” would be 1-D with the number of elements given
for the “lat” dimension and likewise for the variables “lon” and “time”, re-
spectively. Finally, you would define the variable “Ts” as 3-D, dimensioned
“lat”, “lon”, and “time”.

Several Python packages can read netCDF files, including: the Ultrascale
Visualization-Climate Data Analysis Tools (UV-CDAT), CDAT, PyNIO, py-
sclint, PyTables, and ScientificPython. We’ll be discussing ScientificPython
in this section, not because it’s the best package of this bunch but because
it was one of the earliest Python netCDF interfaces, and many subsequent
packages have emulated its user-interface.

5.3.1 NetCDF input/output: Reading a file
ScientificPython is another one of those packages whose “human-readable”

Importing the
Scien-

tificPython
netCDF

submodule.

name is different from its “imported” name. In addition, the netCDF util-
ities are in a subpackage of ScientificPython. Thus, the import name for
the netCDF utilities is long and you will almost always want to assign the
imported package to an alias:

import Scientific.IO.NetCDF as S

6It is unfortunate that “global attributes” and “variable attributes” are called attributes,
since the term attributes has a very specific meaning in object-oriented languages. When I
talk about object attributes in close proximity to netCDF attributes, in this section, I’ll try to
make the object attributes occurrence glossary-linked.

7For more on netCDF, see http://www.unidata.ucar.edu/software/netcdf/docs (accessed
August 16, 2012).

80

5.3. NETCDF INPUT/OUTPUT

The command to create a file object, as we mentioned earlier, is very sim-
ilar to the open command used for text files, except that the constructor is in
the subpackage NetCDF and is named NetCDFFile (the NetCDF subpack-
age is itself in the IO subpackage of the Scientific package). The filename is
the first argument and you specify the mode in which you wish to open the
file by the mode keyword input parameter (set to ’r’ for read, ’w’ for write,
and ’a’ for append; if you forget to write mode=, it will still all work fine).
Thus, to open the file file.nc in read-only mode, type:

fileobj = S.NetCDFFile(’file.nc’, mode=’r’)

With netCDF files, the conceptualization of a file as a file object has
a cognitive benefit. If we think of a file object as being the file itself (as
Python sees it), we might expect that the netCDF global attributes should be
actual attributes of the file object. Indeed, that is the case, and so, in the case
of our above example, if the netCDF file has a global attribute named “title”,
the file object fileobj will have an attribute named title (referred to as
fileobj.title, following the standard Python objects syntax) that is set to
the value of the global attribute.

NetCDF file objects have an attribute variables which is a dictionary.
The
variables

attribute is a
dictionary of
variable
objects.

The keys are strings that are the names of the variables, and the values are
variable objects (which is a kind of object specially defined for netCDF han-
dling) that contain the variable’s value(s) as well as the variable’s metadata
(the variable’s variable attributes). NetCDF file objects also have an attribute
dimensions which is a dictionary. The keys are strings that are the names
of the dimensions, and the values are the lengths of the dimensions. Let’s
look at an example of reading a variable named ’Ts’ from a netCDF file:

Example 42 (Reading a variable named ’Ts’):
In this example, we’ll read in the data associated with the name ’Ts’

(which is probably surface temperature) and one piece of metadata. Note
Get variable
object data
values with
the getValue
method.

that the “name” of the variable is a string; I’m not assuming that the “name”
is the actual variable itself (i.e., a variable Ts). To do the first task, we will
access the data in the variable and put it in a NumPy array. This code would
do the trick:

data = fileobj.variables[’Ts’].getValue()

The variable is found in the variables attribute, which is a dictionary,
so we use the variable name as the key (’Ts’). What is returned from that
dictionary is a special kind of object called a variable object. This object has
a method called getValue which returns the values of the data in the object,

81

5.3. NETCDF INPUT/OUTPUT

so we call that method (which takes no arguments, so we pass it an empty
argument list). Finally, we use assignment to put the values into the NumPy
array data.

Our second task is to obtain metadata about ’Ts’, in particular the units.
To do so, we’ll read the variable attribute units (which gives the units of
’Ts’) that is attached to the ’Ts’ variable object and save it to a scalar
Python variable unit str. Here’s the code that would do this:

units str = fileobj.variables[’Ts’].units

Again, variables is an attribute of fileobj and is a dictionary. Thus,
the ’Ts’ key applied to that dictionary will extract the variable object that
contains the data and metadata of ’Ts’. Variable attributes are attributes of
the variable object, so to obtain the units you specify the units attribute.
Remember, fileobj.variables[’Ts’] gives you a variable object. The
units attribute is a string, which gets set to the variable units str, and
we’re done.

Let’s put all this together and look at a more complex example of reading
a netCDF dataset, in this case, the NCEP/NCAR Reanalysis 1:

Example 43 (Reading a netCDF dataset):
The code below reads the monthly mean surface/near-surface air tem-

perature from the NCEP/NCAR Reanalysis 1 netCDF dataset found in the
subdirectory datasets of the course files directory. The netCDF file is named
air.mon.mean.nc. Without running it, what do you expect would be output?
Try to explain what each line of the code below does before you read the
solution:

1 import numpy as N

2 import Scientific.IO.NetCDF as S

3 fileobj = S.NetCDFFile(’air.mon.mean.nc’, mode=’r’)

4 print fileobj.title

5 print fileobj.dimensions

6 print fileobj.variables

7 data = fileobj.variables[’air’].getValue()

8 print N.shape(data)

9 print data[0:10,30,40]

10 print fileobj.variables[’air’].long_name

82

5.3. NETCDF INPUT/OUTPUT

Solution and discussion: The following is output to screen by the code
above (note though, because the print command does not, in general, word-
wrap properly, I put in line breaks after each item in the dictionary and every
four items in the data listing to make them more readable on this page):

Monthly mean air temperature NCEP Reanalysis

{’lat’: 73, ’lon’: 144, ’time’: None}

{’lat’: <NetCDFVariable object at 0x2194270>,

’air’: <NetCDFVariable object at 0x2194738>,

’lon’: <NetCDFVariable object at 0x21946a8>,

’time’: <NetCDFVariable object at 0x21946f0>}

(755, 73, 144)

[24.64419365 28.36103058 29.27451515 28.94766617

25.15870857 24.2053318 24.1325798 23.70580482

23.58633614 23.20644951]

Monthly Mean Air Temperature

(Note, in the discussion below, the line numbers refer to the code, not the
screen output.) The first line after the NumPy import statement imports the
NetCDF subpackage of Scientific.IO and aliases it to S. The next line
creates the file object representation of the netCDF file and sets the mode to
read-only. The global attribute title, which is the title of the entire file, is
printed out in line 4.

In lines 5 and 6, the dimensions and variables attributes are printed
out. As those attributes are dictionaries, key:value pairs are printed out. This
shows there are three dimensions (latitude, longitude, and time) and four
variables (the dimensions plus the air temperature). Note that the dimension
of ’time’ is set to None because that dimension is this netCDF file’s un-
limited dimension (the dimension along which one can append new latitude-
longitude slices).

In line 7, the NumPy array data is created from the value of the variable
named ’air’, and in the next line, the shape of data is printed out. (The
array is dimensioned [time, latitude, longitude]; remember that the rightmost
dimension is the fastest varying dimension.) In line 9, a subarray of data
is printed out, the data from the first ten time points at a single physical
location. The last line prints out the long name of the variable named ’air’.

(You can type the code in to run it. Alternately, this code can be found in
the code files subdirectory of course files, in the file example-netcdf.py.)

83

5.3. NETCDF INPUT/OUTPUT

5.3.2 NetCDF input/output: Writing a file
In order to write out a netCDF file, you first have to create a file object that
is set for writing, for instance:

fileobj = S.NetCDFFile(’file.nc’, mode=’w’)

Once the file object exists, you use methods of the file object to create the
dimensions and variable objects that will be in the file. You have to create
the dimensions before the variable objects (since the latter depends on the
former), and you have to create the variable objects first before you fill them
with values and metadata.

The createDimension method creates a dimension. This method both
creates the name of the dimension and sets the value (length) of the dimen-
sion. The createVariable method creates a variable object; note that it
only creates the infrastructure for the variable (e.g., the array shape) and
does not fill the values of the variable, set variable attributes, etc.

To fill array variables, use the slicing syntax (i.e., the colon) with the
Filling

netCDF array
and scalar
variables.

variable object in an assignment operation. (This will make more sense once
we see it in the example below.) The values of scalar variables are assigned to
the variable object through the assignValue method of the variable object
(not of the file object). Finally, variable attributes are set using Python’s
regular object assignment syntax, as applied to the variable object.

84

5.3. NETCDF INPUT/OUTPUT

To illustrate the writing process, let’s walk through an example (the ex-
ample’s code can be found in course files/code files in the file example-
netcdf.py):

Example 44 (Writing a netCDF file):
What does the following code do?:

1 fileobj = S.NetCDFFile(’new.nc’, mode=’w’)

2 lat = N.arange(10, dtype=’f’)

3 lon = N.arange(20, dtype=’f’)

4 data1 = N.reshape(N.sin(N.arange(200, dtype=’f’)*0.1),

5 (10,20))

6 data2 = 42.0

7 fileobj.createDimension(’lat’, len(lat))

8 fileobj.createDimension(’lon’, len(lon))

9 lat_var = fileobj.createVariable(’lat’, ’f’, (’lat’,))

10 lon_var = fileobj.createVariable(’lon’, ’f’, (’lon’,))

11 data1_var = fileobj.createVariable(’data1’, ’f’,

12 (’lat’,’lon’))

13 data2_var = fileobj.createVariable(’data2’, ’f’, ())

14 lat_var[:] = lat[:]

15 lon_var[:] = lon[:]

16 data1_var[:,:] = data1[:,:]

17 data1_var.units = ’kg’

18 data2_var.assignValue(data2)

19 fileobj.title = "New netCDF file"

20 fileobj.close()

Solution and discussion: The first line creates the file object connected
to the netCDF file we’ll be writing to. The lines 2–6, we create the data
variables we’ll be writing: two vectors, one 2-D array, and one scalar. After
that, in line 7, we create the latitude and longitude dimensions (named ’lat’
and ’lon’, respectively) based on the lengths of the two vectors.

Lines 9–13 create variable objects using the createVariable method
of the file object. Note how lat var will be the variable in the file named
’lat’ and is a 1-D variable dimensioned by the dimension named ’lat’.
That is to say, the ’lat’ in the first argument of createVariable refers to
the variable’s name while ’lat’ in the third argument of createVariable
(which is part of a 1-element tuple) refers to the dimension created two code
lines above. Variable lon var is structured in a similar way. Finally, note
how because data2 var is a scalar, the dimensioning tuple is empty.

85

5.3. NETCDF INPUT/OUTPUT

Lines 14–16 fill the three non-scalar variables. These arrays are filled
using slicing colons to select both the source values and their destination
elements. In the case of line 14, as a specific example, such use of the slicing
colon is interpreted as meaning “put the values of the array lat into the
values of the variable object lat var.”

Line 17 attaches a units attribute to the variable object data1 var, and
line 18 assigns a scalar value to data2 var. Line 19 assigns the global
attribute title, and the final line closes the file attached to the file object.

5.3.3 Exercise to read and write a netCDF file

� Exercise 17 (Read and write a netCDF reanalysis dataset):
Open the netCDF NCEP/NCAR Reanalysis 1 netCDF dataset of monthly

mean surface/near-surface air temperature and read in the values of the time
variable. (The example data is in the datasets subdirectory of course files in
the file air.mon.mean.nc.)

Alter the time values so that the first time value is 0.0 (i.e., subtract out
the minimum of the values). Change the units string to just say ’hours’,
i.e., eliminate the datum. (The original units string from the netCDF file
gave a datum.)

Write out the new time data and units as a variable in a new netCDF file.

Solution and discussion: The solution is found in course files/code files
in the file exercise-netcdf.py and is reproduced below (with some line con-
tinuations added to fit it on the page):

86

5.4. SUMMARY

1 import numpy as N

2 import Scientific.IO.NetCDF as S

3

4 fileobj = S.NetCDFFile(’air.mon.mean.nc’, mode=’r’)

5 time_data = fileobj.variables[’time’].getValue()

6 time_units = fileobj.variables[’time’].units

7 fileobj.close()

8

9 time_data = time_data - N.min(time_data)

10 time_units = ’hours’

11

12 fileobj = S.NetCDFFile(’newtime.nc’, mode=’w’)

13 fileobj.createDimension(’time’, N.size(time_data))

14 time_var = fileobj.createVariable(’time’,

15 ’d’, (’time’,))

16 time_var.units = time_units

17 time_var[:] = time_data[:]

18 fileobj.title = \

19 "New netCDF file for the time dimension"

20 fileobj.close()

Note again how array syntax makes the calculation to eliminate the time
datum (line 9) a one-liner ,.

5.4 Summary
In this chapter we saw that Python conceptualizes files as objects, with at-
tributes and methods attached to them (as opposed to merely unit number
addresses). To manipulate and access those files, you use the file object’s
methods. For the contents of text files, we found string methods to be use-
ful, and for netCDF files, there are a variety of methods that give you the
numerical data.

While many of the methods we discussed in this chapter can work for
much daily work, you probably will find any one of a number of Python
packages to be easier to use when it comes to doing file input/output. These
include: UV-CDAT, PyNIO, pysclint, PyTables, etc. Some of these packages
include text input/output functions that do line splitting and conversion for
you. Some of these packages can also handle other formats such as HDF,
GRIB, etc. For a list of more file input/output resources, please see Ch. 10.

87

5.4. SUMMARY

88

