Jounny WEI-BING LIN

A Hands-On Introduction to Using
Python in the Atmospheric and
Oceanic Sciences

HTTP://WWW.JOHNNY-LIN.COM/PYINTRO

2012

© 2012 Johnny Wei-Bing Lin.
Some rights reserved. Printed version: ISBN 978-1-300-07616-2. PDF ver-
sions: No ISBNs are assigned.

This work is licensed under the Creative Commons Attribution-Noncom-
mercial-Share Alike 3.0 United States License (CC BY-NC-SA). To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
us or send a letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA.

Who would not want to pay money for this book?: if you do not need
a black-and-white paper copy of the book, a color PDF copy with functional
hyperlinks, have limited funds, or are interested in such a small portion of
the book that it makes no sense to buy the whole thing. The book’s web site
(http://www.johnny-lin.com/pyintro) has available, for free, PDFs of every
chapter as separate files.

Who would want to pay money for this book?: if you want a black-
and-white paper copy of the book, a color PDF copy with functional hy-
perlinks, or you want to help support the author financially. You can buy
a black-and-white paper copy of the book at http://www.johnny-lin.com/
pyintro/buypaper.shtml and a hyperlink-enabled color PDF copy of the book
at http://www.johnny-lin.com/pyintro/buypdf.shtml.

A special appeal to instructors: Instruction at for-profit institutions, as
a commercial use, is not covered under the terms of the CC BY-NC-SA, and
so instructors at those institutions should not make copies of the book for
students beyond copying permitted under Fair Use. Instruction at not-for-
profit institutions is not a commercial use, so instructors may legally make
copies of this book for the students in their classes, under the terms of the CC
BY-NC-SA, so long as no profit is made through the copy and sale (or Fair
Use is not exceeded). However, most instruction at not-for-profit institutions
still involves payment of tuition: lots of people are getting paid for their
contributions. Please consider also paying the author of this book something
for his contribution.

Regardless of whether or not you paid money for your copy of the book,
you are free to use any and all parts of the book under the terms of the CC
BY-NC-SA.

Chapter 3

Basic Data and Control Structures

Python, like any other programming language, has variables and all the stan-
dard control structures. As a multi-paradigm language, however, Python has
data and control structures not commonly found in languages traditionally
used by AOS users. In this chapter, I will describe Python’s basic data and
control structures that support procedural programming. By the end of this
chapter, you should be able to write Fortran programs in Python ©.

3.1 Overview of basic variables and operators

Unlike languages like Fortran, Python is dynamically typed, meaning that
variables take on the type of whatever they are set to when they are assigned.
Thus, a=5 makes the variable a an integer, but a=5.0 makes the variable a
a floating point number. Additionally, because assignment can happen any-
time during the program, this means you can change the type of the variable
without changing the variable name.

The built-in variable types are as you would guess, along with a few
others. Here’s a partial list of some of the most important basic types:

o Integer (short and long) and floating point (float)

Strings

Booleans

NoneType

Lists and tuples

Dictionaries

17

Python is
dynamically
typed.

Arithmetic
and
comparison
operators.

Python is
case-
sensitive.

3.1. OVERVIEW OF BASIC VARIABLES AND OPERATORS

The first three items are probably familiar to you, but NoneType, lists,
tuples, and dictionaries might not be. I’ll be talking about all these types as
we go along in this chapter.

Arithmetic operators are as you would guess: (+, -, /, *, ** for addi-
tion, subtraction, division, multiplication, and exponentiation, respectively),
as are comparison operators (>, <, >=, <=, !=, == for greater than, less
than, greater than or equal to, less than or equal to, not equal, and equal,
respectively).

Please note that Python is case-sensitive, so “N” and “n” are different.

Example 4 (Create and use some numerical variables):
Open up a Python interpreter by typing python in a terminal window or
use the Python Shell in IDLE. Type these lines in in the interpreter:

= 3.5
-2.1
=3
4

PN oW
|

ol

b+c
a/c
c/d

What did you find?

Solution and discussion: You should have gotten something like this:

>>> a = 3.5

>> b = -2.1

>>> c = 3

>>>d = 4

>>> a*b
-7.3500000000000005
>>> b+c
0.8999999999999999
>>> a/c
1.1666666666666667
>>> c/d

0

18

3.2. STRINGS

Remember Python is dynamically typed: It automatically decides what type
a variable is based on the value/operation. Thus, a and b are floats and c and
d are integers.

For operations, Python will generally make the output type the type that
retains the most information. E.g., if one of the variables is float, a float
variable is returned. However, if both variables are integers, integer division
is performed, where the remainder is discarded. Thus a/c returns what you
expect since a is float, but c/d does integer division and returns only the
quotient (as an integer). Note that in Python 2.x, integers can be short or
long; short has a size limit but long does not. In Python 3.x, all integers are
long.

Here’s a question: Why is the answer to a*b not exactly —7.35? Re-
member that floating point numbers on any binary computer are, in general,
not represented exactly.! (This is why you should never do logical equality
comparisons between floating point numbers; instead, you should compare
whether two floating point numbers are “close to” each other. The NumPy
array package has a function allclose that does this.) The default format-
ting setting for the print command, will sometimes print out enough of the
portion after the decimal point to show that.

Let’s take a look in more detail at the non-numeric built-in data types I
listed before, i.e., strings, booleans, NoneType, lists and tuples, and dictio-
naries.

3.2 Strings

String variables are created by setting text in either paired single or double
quotes (it doesn’t normally matter which, as long as they are consistently
paired), e.g.: a = "hello".

Some “special” strings include:

e "\n": newline character
e "\t": tab character

e "\\": backslash

!'See Bruce Bush’s article “The Perils of Floating Point,” http://www.lahey.com/float.htm
(accessed March 17, 2012).

19

Python
usually
upcasts type
if needed.

Binary
floating point
representa-
tions are
inexact and
the allclose
function.

Creating
strings.

Special
strings.

Triple quotes.

Connecting
strings.

True and
False are
Python’s
boolean
values.

3.3. BOOLEANS

Python has a special construct called “triple quotes,” i.e., quotation marks
or apostrophes placed one after the other ("""), which delimit strings that are
set to whatever is typed in between the triple quotes, (more or less) verbatim.
This includes newline characters (but not backslashes), so this is an easy way
to make strings with complex formatting.

Finally, Python uses the addition operator (+) to join strings together.

Example 5 (An operation with strings):
Try typing this in a Python interpreter:

a = "hello"
b = "there"
a+b

What did you get? Also try: print a + b.

Solution and discussion: The first two lines set a and b as string vari-
ables with values set to the given strings. Because the addition sign concate-
nates two strings together, a + b will return the string "hellothere’. The
print command gives you the same thing, but it does not include the quotes
which show that the result of a + b is a string.

3.3 Booleans

Boolean variables are variables that can have only one of two values, one
of which is considered “true” and the other of which is considered “false.”
In some languages, the integer value zero is considered false and the integer
value one is considered true. Older versions of Python also followed that
convention (and this still works arithmetically); in recent versions of Python,
there are two special values called True and False that serve as the values a
boolean variable can take. (Note the capitalization matters.) Logical opera-
tors that operate on boolean variables are mainly as expected: and, or, not,
etc.

Example 6 (Operations with boolean variables):
Try this in a Python interpreter:

20

3.4. NONETYPE

a = True

b = False
print a and b
print a or b
print 4 > 5

What did you get?

Solution and discussion: The first two lines assign a and b as boolean
variables. The first two print statements return False and True, respec-
tively. Remember that and requires both operands to be True in order to
return True, while or only requires one of the operands be True to return
True. Note that comparison operators (i.e., 4 > 5) yield booleans, so the
final print line returns False.

3.4 NoneType

This is a data type you probably have not seen before. A variable of None-
Type can have only a single value, the value None. (Yes, the word “None,”
capitalized as shown, is defined as an actual value in Python, just like True
and False.)

The None
value.

Example 7 (Operations with NoneType):
Try this in a Python interpreter:

a = None
print a is None
print a ==

What did you get?

Solution and discussion: The first print statement will return True
while the second print statement will return False.

. . . Logical
The is operator compares “equality” not in the sense of value (like == ;a1ity and
does) but in the sense of memory location. You can type in “a == None”, is.

21

Using None
to safely
initialize a
parameter.

Lists are
mutable
ordered

sequences.

List element
indices start
with 0.

The len
function
returns the
length of lists
and tuples.

3.5. LISTS AND TUPLES

4 test

the better syntax for comparing to None is “a is None”.? The a
is false because the number 4 is not equal to None.

So what is the use of a variable of NoneType? [use it to “safely” initialize
a parameter. That is to say, I initialize a variable to None, and if later on my
program tries to do an operation with the variable before the variable has
been reassigned to a non-NoneType variable, Python will give an error. This
is a simple way to make sure I did not forget to set the variable to a real
value. Remember variables are dynamically typed, so replacing a NoneType
variable with some other value later on is no problem!

3.5 Lists and tuples

Lists are ordered sequences. They are like arrays (in Fortran, IDL, etc.),
except each of the items in the list do not have to be of the same type. A
given list element can also be set to anything, even another list. Square
brackets (“[]1”) delimit (i.e., start and stop) a list, and commas between list
elements separate elements from one another. If you have a one element list,
put a comma after the element.

List element addresses start with zero, so the first element of list a is
a[0], the second is a[1], etc. IDL follows this convention but Fortran does
not. Because the ordinal value (i.e., first, second, third, etc.) of an element
differs from the address of an element (i.e., zero, one, two, etc.), when we
refer to an element by its address we will append a “th” to the end of the
address. That is, the “zeroth” element by address is the first element by
position in the list, the “oneth” element by address is the second element by
position, the “twoth” element by address is the third element by position, and
SO on.

Finally, the length of a list can be obtained using the len function, e.g.,
len(a) to find the length of the list a.

Example 8 (A list):
Type in the following in the Python interpreter:

a=1[2, 3.2, 'hello’, [-1.2, ’there’, 5.5]]

2The reason is a little esoteric; see the web page http://jaredgrubb.blogspot.com/2009/04/
python-is-none-vs-none.html if you’re interested in the details (accessed August 16, 2012).

22

3.5. LISTS AND TUPLES

What is 1en(a)? What does a[1] equal to? How about a[3]? a[3]1[1]?

Solution and discussion: The 1len(a) is4,a[1] equals 3.2, a[3] equals
the list [-1.2, ’there’, 5.5], and a[3][1] equals the string ’ there’.
I find the easiest way to read a complex reference like a[3][1] is from left
to right, that is, “in the threeth element of the list a, take the oneth element.”

In Python, list elements can also be addressed starting from the end; thus,
a[-1] is the last element in list a, a[-2] is the next to last element, etc.

You can create new lists that are slices of an existing list. Slicing follows
these rules:

e Element addresses in a range are separated by a colon.

e The lower limit of the range is inclusive, and the upper limit of the
range is exclusive.

Example 9 (Slicing a list):
Consider again the list a that you just typed in for Example 8. What
would a[1:3] return?

Solution and discussion: You should get the following if you print out
the list slice a[1:3]:

>>> print a[l:3]
[3.2, ’hello’]

Because the upper-limit is exclusive in the slice, the threeth element (i.e., the
fourth element) is not part of the slice; only the oneth and twoth (i.e., second
and third) elements are part of the slice.

Lists are mutable (i.e., you can add and remove items, change the size of
the list). One way of changing elements in a list is by assignment (just like
you would change an element in a Fortran, IDL, etc. array):

Example 10 (Changing list element values by assignment):
Let’s go back to the list in Example 8:

23

Referencing
list elements
that are lists.

Indexing
from the end
of a sequence.

Slicing rules.

The insert,
remove, and
append
methods for
lists.

3.5. LISTS AND TUPLES

a=1[2, 3.2, ’hello’, [-1.2, ’'there’, 5.5]]
How would we go about replacing the value of the second element with the
string ’goodbye’?
Solution and discussion: We refer to the second element as a[1], so
using variable assignment, we change that element by:
a[l] = ’goodbye’
The list a is now:

[2, 'goodbye’, ’'hello’, [-1.2, ’there’, 5.5]]

Python lists, however, also have special “built-in” functions that allow
you to insert items into the list, pop off items from the list, etc. We’ll dis-
cuss the nature of those functions (which are called methods; this relates
to object-oriented programming) in detail in Ch. 7. Even without that dis-
cussion, however, it is still fruitful to consider a few examples of using list
methods to alter lists:

Example 11 (Changing lists using list methods):
Assume we have the list we defined in Example 8:

a=1[2, 3.2, ’hello’, [-1.2, ’there’, 5.5]]

What do the following commands give you when typed into the Python in-
terpreter?:

e a.insert(2, ’everyone’)
e a.remove(2)

e a.append(4.5)

Solution and discussion: The first command insert inserts the string
"everyone’ into the list after the twoth (i.e., third) element of the list. The
second command remove removes the first occurrence of the value given in
the argument. The final command append adds the argument to the end of
the list.

For the list a, if we printed out the contents of a after each of the above
three lines were executed one after the other, we would get:

24

3.6. EXERCISES WITH LISTS AND TUPLES

[2, 3.2, ’everyone’, ’hello’, [-1.2, ’there’, 5.5]]
[3.2, ’everyone’, ’hello’, [-1.2, ’there’, 5.5]]
[3.2, ’everyone’, ’'hello’, [-1.2, ’there’, 5.5], 4.5]

Tuples are nearly identical to lists with the exception that tuples cannot
be changed (i.e., they are immutable). That is to say, if you try to insert an
element in a tuple, Python will return an error. Tuples are defined exactly as
lists except you use parenthesis as delimiters instead of square brackets, e.g.,
b = (3.2, ’hello’).

Note: You can, to an extent, treat strings as lists. Thus, if a = "hello",
then a[1:3] will return the substring "el".

3.6 Exercises with lists and tuples

Remember that exercises are no less necessary than examples to attempt!
The only real difference between exercises and examples is that the former
are more complex than the latter; pedagogically speaking, both types of prob-
lems are used in a similar way, and in my discussion of both examples and
exercises, I will often introduce new topics.

> Exercise 4 (Making and changing a list):

1. Take your street address and make it a list variable myaddress where
each token is an element. Make numbers numbers and words strings.

2. What would be the code to set the sum of the numerical portions of
your address list to a variable called address_sum?

3. What would be the code to change one of the string elements of the
list to another string (e.g., if your address had “West” in it, how would
you change that string to “North’)?

Solution and discussion: We give the solutions for each of the questions
above:

1. For my work address, the myaddress list is:

myaddress = [3225, ’West’, ’'Foster’, ’Avenue’,
"Chicago’, 'IL’, 60625]

25

Tuples are
immutable
ordered

sequences.

Slicing
strings as if
each
character
were a list
element.

3.7. DICTIONARIES

Note that when you type in a list in Python, you can break the list

after the completion of an element and continue the list on the next

line, and Python will automatically know the list is being continued

(leading blank spaces are ignored). In general, however, you continue

, a line of code in Python by putting a backslash (“\”) at the end of a

Line . . .
continuation line, with nothing after the backslash. Thus, you can also enter the
in Python. above list by typing in:

myaddress = [3225, ’West’, ’'Foster’, ’Avenue’, \
"Chicago’, 'IL’, 60625]

2. This sets the sum of the numerical portions to address_sum:
address_sum = myaddress[0] + myaddress[-1]
3. Code to change “West” to “North™:

myaddress[1] = "North"

> Exercise 5 (Altering the order of a list’s elements):

Take the list you created in Exercise 4 and change the street portion of
myaddress to have the street first and the building number at the end. Hints:
Make use of assignments and slicing.

Solution and discussion: To change the street portion of myaddress
and view the result:

a = myaddress[0]

b = myaddress[1:3]
myaddress[0:2] = b
myaddress[2] = a
print myaddress

Note that you can assign sublists of a list in one fell swoop if the value on

EE the right can be parsed element-wise (e.g., is also a list of the same length).

sublists.

3.7 Dictionaries

Like lists and tuples, dictionaries are also collections of elements, but dictio-
naries, instead of being ordered, are unordered lists whose elements are ref-
erenced by keys, not by position. Keys can be anything that can be uniquely

Definition of
a dictionary.

26

3.7. DICTIONARIES

named and sorted. In practice, keys are usually integers or strings. Values
can be anything. (And when I say “anything,” I mean anything, just like
lists and tuples. We’ll see in Ch. 6 a little of the broad range of values that
dictionaries can hold and how that is a useful feature.) Dictionaries are very
powerful; this one data structure revolutionized my code.

Curly braces (“{}’) delimit a dictionary. The elements of a dictionary
are “key:value” pairs, separated by a colon. Dictionary elements are refer-
enced like lists, except the key is given in place of the element address. The
example below will make this all clearer:

Example 12 (A dictionary):
Type the following in the Python interpreter:

a=1{a:2, 'b:3.2, 'c’:[-1.2, ’'there’, 5.5]}
For the dictionary a:
e What does a[’b’] return?

e Whatdoes a[’c’][1] return?

Solution and discussion: a[’b’] returns the floating point number 3. 2.
a[’c’] returns the list [-1.2, ’'there’, 5.5],soal[’c’][1] returns the
oneth element of that list, the string ’there’.

Like lists, dictionaries come with “built-in”” functions (methods) that en-
able you to find out all the keys in the dictionary, find out all the values in
the dictionary, etc. In Ch. 7, when we introduce OOP, we’ll discuss the na-
ture of methods in detail, but even without that discussion, it is still useful to
consider a few examples of dictionary methods:

Example 13 (A few dictionary methods):
Assume we have the dictionary from Example 12 already defined in the
Python interpreter:

a={a:2, 'b’:3.2, ’c’:[-1.2, ’there’, 5.5]}

If you typed the following into the Python interpreter, what would you get
for each line?:

27

The keys,
values, and
has_key
methods.

Do not
assume
dictionaries
are stored in
any particular
order.

3.8. EXERCISES WITH DICTIONARIES

°
Q.
l

a.keys(Q)

°
Q.
Il

a.values(Q)

e a.has key(’'c’)

Solution and discussion: The first line executes the command keys,
which returns a list of all the keys of a, and sets that list to the variable d.
The second command does this same thing as the first command, except d is
a list of the values in the dictionary a. The third command tests if dictionary
a has an element with the key ’c’, returning True if true and False if not.
For the dictionary a, the first line returns the list [’a’, ’
that to the variable d while the second line returns True.

Note that the keys and values methods do not return a sorted list of
items. Because dictionaries are unordered collections, you must not assume
the key:value pairs are stored in the dictionary in any particular order. If you
want to access the dictionary values in a specific order, you should first order
the dictionary’s keys (or, in some cases, values) in the desired order using a
sorting function like sorted. (Section 7.9.1 gives an example of the use of
sorted.)

c’, ’b’] and sets

3.8 Exercises with dictionaries

> Exercise 6 (Create a dictionary):

Create a dictionary myaddress using your address. Choose relevant keys
(they will probably be strings), and separate your address into street address,
city, state, and postal code portions, all of which are strings (for your ZIP
Code, don’t enter it in as a number).

Solution and discussion: For my work address:

myaddress = {’street’:’3225 West Foster Avenue’,
’city’:’Chicago’, ’'state’:’IL’,
'zip’:’60625°}

28

3.9. FUNCTIONS

As with lists and tuples, I don’t need to specify the line continuation charac-
ter if I break the line in-between the specifications for each element.

> Exercise 7 (Using elements from a dictionary):

Create a variable full address that is the concatenation of all the el-
ements of the myaddress variable from Exercise 6; in your concatenation,
include commas and blank spaces as needed. Hint: Remember that commas
and blanks can be made into strings.

Solution and discussion: Here’s my solution for my myaddress from
Exercise 6:

full_address

myaddress[’street’] + ’, ’ \
myaddress[’city’] + ’, ’ \
myaddress[’state’] +
myaddress[’zip’]

+ + +

Notice how when I choose keys that have a clear meaning, in this case labels
like “street” and “city,” my references to the values in the dictionary asso-
ciated with those keys read sensibly: myaddress[’street’] makes more
sense than myaddress[0]. This is one benefit of dictionaries over lists and
tuples.

3.9 Functions

Functions in Python, in theory, work both like functions and subroutines in
Fortran, in that (1) input comes via arguments and (2) output occurs through:
a return variable (like Fortran functions) and/or arguments (like Fortran sub-
routines). In practice, functions in Python are written to act like Fortran
functions, with a single output returned. (The return value is specified by the
return statement.) If you want multiple returns, it’s easier to put them into
a list or use objects.

Function definitions begin with a def statement, followed by the name of
the function and the argument list in parenthesis. The contents of the func-
tion after this def line are indented in “x” spaces (where “x” is a constant).
Usually, people indent 4 spaces. (In practice, if you use a development en-
vironment like IDLE, or the Python mode in vi or Emacs, you don’t have to
add the indentation yourself; the environment does it for you.) Example 14
below shows how the indentation works to indicate what lines are inside the
function.

29

Dictionaries
allow you to
choose
meaningful
keys.

Functions
work like
Fortran
functions and
subroutines.

All lines in a
statement
block are
usually
indented in 4
spaces.

Functions are
defined by
def and used
by calling.

Positional and
keyword
arguments.

3.9. FUNCTIONS

Important side note: All block structures in Python use indentation to
show when they begin and end. This convention is in lieu of “end” lines like
end do and end if in Fortran. For those of us who have had experience
using the fixed-form format of Fortran 77, this will seem like a bad idea. For
now, just trust me that this indentation convention actually makes your code
clearer, more readable, and more concise.

Example 14 (A function):
Type the following in a file (remember to use four spaces for the inden-
tation instead of a tab or another number of spaces):

def area(radius):
area = 3.14 * (radius**2)
return area

What happens if you run the file? Why did nothing happen? Now type the
following in the interpreter or Python Shell:

a = area(3)
print a

What happens?

Solution and discussion: In the first case, nothing happened because you
only defined the function; the function was not called. In the second case,
you call the function, set the return value to the variable a, and print out a
to the screen. Note that in such a simple function, you could have skipped
creating the local variable area and just typed:

return 3.14 * (radius**2)

which would have evaluated the expression prior to the return.

Note how the indentation shows that the two lines of code after the def
line are the lines inside the function (i.e., they are the code that does the
function’s tasks).

As we said earlier, inputs to a function, in general, come in via the argu-
ment list while the output is the return value of the function. Python accepts
both positional and keyword arguments in the argument list of a function: Po-
sitional arguments are usually for required input while keyword arguments

30

3.9. FUNCTIONS

are usually for optional input. Typically, keyword arguments are set to some
default value. If you do not want to have a default value set for the keyword,
a safe practice is to just set the keyword to None.

Example 15 (A function with both positional and keyword arguments):
Type the following in a file:

def area(radius, pi=None):
area = pi * (radius**2)
return area

a = area(3)

What happens if you run the file?

Solution and discussion: You should have received an error like this
(note I handwrapped the last line to make it fit on the page):

Traceback (most recent call last):
File "example.py", line 4, in <module>
a = area(3)
File "example.py", line 2, in area
area = pi * (radius**2)
TypeError: unsupported operand
type(s) for *: ’'NoneType’ and

int’

Because in your a = area(3) call you did not define the keyword argument
pi, when the function was called, it used the default value of None for pi.
When the function tried to execute an arithmetic operation using pi, an error
was raised and execution was transferred to the main program level, where
execution finally stopped.

If you type in the following in the interpreter or Python Shell, after first
executing the code in yourfilename.py (where yourfilename.py is the name of
the file in which you defined the area function):?

a = area(3, pi=3.14)
print a

3Recall you execute a file either by typing in python -i yourfilename.py at the
command-line or by running the module in IDLE.

31

A simpler,
compact way
of passing in

lists of
arguments.

3.9. FUNCTIONS

you will get a print-to-screen of the answer, 28.26. Upon the call of area,
the value of 3.14 was set to pi in the function.

Traditionally, Fortran and similar procedural language programmers have
had to deal with the problem of lengthy and unwieldy argument lists: If you
want to pass in 30 variables, your argument list has 30 variables in it. (It is
not surprising to see such subroutine calls in a climate model.) A list of such
a length is an undetected error waiting to happen; one typing slip and you
could be passing in surface roughness instead of humidity!

Python has a nifty way of passing in lists of positional and keyword ar-
guments in one fell swoop by considering a list of positional arguments as
a list/tuple and a collection of keyword arguments as a dictionary. You can
then use all of Python’s built-in list and dictionary methods to manage your
function’s arguments, with the function’s calling line only having two vari-
ables. This example illustrates how to do this:

Example 16 (Passing in lists of positional and keyword arguments):

Try typing in the following in the same file where you defined the version
of area with both positional and keyword arguments (i.e., the version in
Example 15):

args = [3,]

kwds = {’pi’:3.14}

a = area(*args, **kwds)
print a

then run your file from the Unix command line by:
python -i yourfilename.py

(or using the shell in IDLE). Remember to put these lines after your def-
inition of area; otherwise, you will not have an area function to refer to
O.

Solution and discussion: This code should work exactly the same as
Example 15, that is:

a = area(*args, **kwds)

works the same as:

32

3.10. LOGICAL CONSTRUCTS

a = area(3, pi=3.14)

where args and kwds are given as above. You will get a print-to-screen of
the answer, 28.26.

Example 16 illustrates the following rules for passing in function argu-
ments by lists and dictionaries:

¢ In the function call, put an asterisk (*) before the list that contains the
positional arguments and put two asterisks before the dictionary that
contains the keyword arguments.

e The list of positional arguments is a list where each element in the list
is a positional argument to be passed in, and the list is ordered in the
same order as the positional arguments.

e The dictionary of keyword arguments uses string keys corresponding
to the name of the keyword and the value of the key:value pairs as the
value set to the keyword parameter.

3.10 Logical constructs

The syntax for if-statements is

if
if <condition>: statements.
followed by the block of code to execute if <condition> is true. Because
indentation delimits the contents of the if block, there is no need for an
“endif” line.
Example 17 (A compound if statement):
Type the following in a file: The
B compound
a=3 elif
if a == 3: statement.
print ’T ama ’, a
elif a == 2:
print 'I am a 2’
else:

print I am not a 3 or 2’

33

Remember
the colon
after if, etc.!

The for loop
goes through
a sequence of

items.

3.11. LOOPING

First guess what you think will happen if you run the file (what do you think
elif does? else?) then run the file. What did you get? What would you
need to changetogetI am a 2orI am not a 3 or 2 to be output to the
screen?

Solution and discussion: Because a = 3, the first if test will test true
and I am a 3 will be printed to the screen.

The elif statement is used after the first test and means “else if”, or “if
the previous if was not true, consider this 1f”. You can have any number
of elifs after the initial if and the compound if statement will go through
each one, testing the line’s condition and executing what is in the block under
the elif line if true (then exiting the compound if) and going on to the next
test if false.

The else executes if none of the other if and elif statements tested
true and is ignored otherwise.

Don’t forget the colon at the end of if, elif, and else statements! It’s
easy to forget them © (same with the def statement for defining functions).

3.11 Looping

3.11.1 Looping a definite number of times
The standard loop in Python begins with for and has the syntax:
for <index> in <list>:

followed by the contents of the loop. (Don’t forget the colon at the end of the
for line.) The for loop is kind of different compared to the Fortran do loops
you might be familiar with. In Fortran, IDL, etc. you specify a beginning
value and an ending value (often 1 and an integer n) for an index, and the
loop runs through all integers from that beginning value to that ending value,
setting the index to that value. In Python, the loop index runs through a list of
items, and the index is assigned to each item in that list, one after the other,
until the list of items is exhausted.

Example 18 (A for loop):
Type the following in a file (remember to indent 4 spaces in the second
line):

34

3.11. LOOPING

for i in [2, -3.3, ’hello’, 1, -12]:
print i

Run the file. What did you get?

Solution and discussion: The code prints out the elements of the list to
screen, one element per line:

2
-3.3
hello
1

-12

This means i changes type as the loop executes. It starts as an integer, be-
comes floating point, then becomes a string, returns to being an integer, and
ends as an integer.

Recall that elements in a Python list can be of any type, and that list
elements do not all have to be of the same type. Also remember that Python is
dynamically typed, so that a variable will change its type to reflect whatever
it is assigned to at any given time. Thus, in a loop, the loop index could,
potentially, be changing in type as the loop runs through all the elements in
a list, which was the case in Example 18 above. Since the loop index does
not have to be an integer, it doesn’t really make sense to call it an “index;”
in Python, it’s called an iterator. Note too that since the iterator is not just a
number, but an object, you have access to all of the attributes and methods
of its class (again, more on this in Ch. 7).

A lot of the time you will loop through lists. Technically, however,
Python loops can loop through any data structure that is iterable, i.e., a
structure where after you’ve looked at one element of it, it will move you
onto the next element. Arrays (which we’ll cover in Ch. 4) are another iter-
able structure.

In Fortran, we often loop through arrays by the addresses of the elements.
So too in Python, often, you will want to loop through a list by list element
addresses. To make this easier to do there is a built-in function called range
which produces such a list: range (n) returns the list [0, 1,2, ..., n — 1].

Example 19 (A for loop using the range function):
Type the following in a file:

35

Iterators are
different than
Fortran
looping
indices.

You can loop
through any
iterable.

The range
function
makes a list
of indices.

The while
loop.

3.11. LOOPING

a=1[2, -3, 'hello’, 1, -12]
for i in range(5):
print a[i]

Run the file. What did you get?

Solution and discussion: This code will give the exact same results as in
Example 18. The function call range (5) produces the list:
[0, 1, 2, 3, 4]

which the iterator i runs through, and which is used as the index for elements
in list a. Thus, i is an integer for every step of the loop.

3.11.2 Looping an indefinite number of times

Python also has a while loop. It’s like any other while loop and begins with
the syntax:

while <condition>:

The code block (indented) that follows the while line is executed while
<condition> evaluates as True. Here’s a simple example:

Example 20 (A while loop):
Type in the following into a file (or the interpreter):

a=1

while a < 10:
print a
a=a+1

What did you get?

Solution and discussion: This will print out the integers one through
ten, with each integer on its own line. Prior to executing the code block un-
derneath the while statement, the interpreter checks whether the condition
(a < 10) is true or false. If the condition evaluates as True, the code block
executes; if the condition evaluates as False, the code block is not executed.
Thus:

36

3.12. EXERCISES ON FUNCTIONS, LOGICAL CONSTRUCTS, AND

LOOPING
a =10
while a < 10:
print a
a=a+1

will do nothing. Likewise:

a =10

while False:
print a
a=a+1

will also do nothing. In this last code snippet, the value of the variable a
i1s immaterial; as the condition is always set to False, the while loop will
never execute. (Conversely, a while True: statement will never terminate.
It is a bad idea to write such a statement ©.)

Please see your favorite Python reference if you’d like more information
about while loops (my reference suggestions are given in Ch. 10). Because
they are not as common as their for cousins (at least in AOS applications),
I won’t spend exercise time on them.

3.12 Exercises on functions, logical constructs,
and looping

> Exercise 8 (Looping through a list of street address elements):
Take the list of the parts of your street address from Exercise 4. Write a
loop that goes through that list and prints out each item in that list.

Solution and discussion: My street address list was:

myaddress = [3225, ’West’, ’'Foster’, ’Avenue’, \
"Chicago’, 'IL’, 60625]

The following loop will do the job:

for i in myaddress:
print i

37

3.12. EXERCISES ON FUNCTIONS, LOGICAL CONSTRUCTS, AND
LOOPING

as will this loop:

for i in range(len(myaddress)):
print myaddress[i]

Remember the built-in 1en function returns the length of the list that is
its argument; the length is an integer and is the argument passed into the
range call. Note also that the type of i behaves differently in the two loops.
Python is dynamically typed!

> Exercise 9 (Looping through a list of temperatures and applying a
test):
Pretend you have the following list of temperatures T:

T = [273.4, 265.5, 277.7, 285.5]

and a list of flags called Tflags that is initialized to all False. Tflags and
T are each the same size. Thus:

Tflags = [False, False, False, False]

Write a loop that checks each temperature in T and sets the corresponding
Tflags element to True if the temperature is above the freezing point of
water.

Solution and discussion: The following loop will do the job:

for i in range(len(T)):
if T[i] > 273.15:
Tflags[i] = True

Remember I’'m assuming both T and Tflags are already defined before I
enter the loop.

> Exercise 10 (A function to loop through a list of temperatures and
apply a test):

Turn your answer to Exercise 9 into a function. Assume that T is the input
argument and Tflags is what you will want to return from the function. A
hint: You can create a four-element list whose values all equal False by
typing [False]*4. Thus:

Tflags = [False]*4

does the same thing as:

38

3.13. MODULES

Tflags = [False, False, False, False]

Also, you may want to use the range and len functions at some point in
your code.

Solution and discussion: The following function will do the job:

def temptest(T):
Tflags = [False]*len(T)
for i in range(len(T)):
if T[i] > 273.15:
Tflags[i] = True
return Tflags

3.13 Modules

Python calls libraries “modules” and “packages,” where a package is a col-
lection of modules. (Usually, people say “module” to refer to both modules
and packages, since they’re used very similarly. I’ll do that for most of this
book.) Unlike compiled languages like Fortran, however, these modules are
not collections of object files but rather regular Python source code files. A
module is a single source code file and a package is a directory containing
source code files (and possibly subdirectories of source code files).

To import a module, Python provides a command called import, and its
syntax is:

Modules and
packages.

Importing a
module.

import <module name>

Let’s look at an example to help our discussion of how to import and use
Python modules:

Example 21 (Importing a module):
To import a module called NumPy (this is Python’s array package, which
we’ll talk about in-depth in Ch. 4), type:

import numpy

Type this in the Python interpreter. It should execute without any message
being printed to the screen.

39

Referring to
functions, etc.
in a module.

Importing and
namespaces.

Referring to
submodules.

3.13. MODULES

Once a module is imported, you can use functions, variables, etc. defined
in the module by referring to the imported name (here numpy), putting a pe-
riod (“.”), and the name of the function, variable, etc. that was defined in the
module. Thus, to use the sin function in the package, refer to numpy. sin.

Try typing:
a = numpy.sin(4)

This will return the sine of 4 and set it to the variable a. Print out a to check
this worked correctly; it should equal —0.756, approximately (I truncated
most of the digits that the print statement provides).

What import essentially does is to run the code file that has the filename
of <module name>.py. When import runs that code file, it runs the file in its
own little “interpreter.” This “interpreter,” however, is not a separate Python
session but occurs in the current session within a variable named after the
module’s name. That is to say, the import executes the module’s code in
its own namespace; that namespace is a variable with the same name as the
module’s name.

For import numpy, the filename that would be run is numpy.py and the
contents of that file would be run in the namespace numpy. (This isn’t quite
what happens for NumPy, because NumPy is technically a package of many
files, not a module of a single file, but the principle is the same.) If all the
module file does is define functions, variables, etc., then nothing will be out-
put. But you have access to everything that is defined by typing the module
name, a period, then the name of the module function, variable, etc. you
want (hence, numpy . sin, etc.). Just as in a regular Python session you have
access to all the variables, functions, etc. you define in that regular session,
with an imported module, all the variables, functions, etc. that the module
created and used are also sitting inside the module’s namespace, ready for
you to access, using the syntax just mentioned.

Submodules (which are subdirectories inside the package directory) are
also specified with the periods. For instance, NumPy has a submodule called
ma, which in turn has special functions defined in it. The submodule then
is referred to as numpy.ma and the array function in the submodule as
numpy .ma.array.

(As an aside, sometimes the name of a module as written or spoken is
different from name that goes in the import command: NumPy is the mod-
ule name, but the namespace is numpy, the Scientific Python package has

40

3.14. A BRIEF INTRODUCTION TO OBJECT SYNTAX

a namespace Scientific, and so on. This is confusing, but unfortunately
some modules are this way.)

The idea of a namespace for Python modules helps protect against col-
lisions. In Fortran, you have to be careful you do not duplicate function
and subroutine names when you compile against multiple libraries, because
if there is a function of the same name in two libraries, one of those will
be overwritten. With Python modules, this kind of collision cannot occur,
because functions are attached to modules by name through the imported
module’s namespace. It is, however, possible to defeat this feature and cause
collisions if you really want to (e.g., by having duplicate module names in
PYTHONPATH directories or improper use of from ... import), which
is why I am teaching you the safe way of importing rather than the risky way
®.

Sometimes, if you use a module a lot, you will want refer to it by a
shorter name. To do this, use the import <module> as <alias> construct,
for instance:

import numpy as N

Then, N. sin is the same as numpy.sin.

Finally, remember, modules can contain data in addition to functions.
The syntax to refer to those module data variables is exactly the same as for
functions. Thus, numpy . pi gives the value of the mathematical constant 7.

3.14 A brief introduction to object syntax

While we introduced some elements of objects with Section 3.5 on lists and
tuples and Section 3.7 on dictionaries, and while we’re saving a rigorous
introduction to objects for Ch. 7), at this time, having talked about the syntax
for modules, we should briefly introduce a little of what objects are and how
in Python to refer to objects and their parts.

The key idea of objects is that variables shouldn’t be thought of as having
only values (and type), but rather they should be thought of entities that can
have any number of other things “attached” to them. If the attached thing is
a piece of data, it’s called an attribute of the object variable. If the attached
thing is a function, it’s called a method.

From a syntax viewpoint, if you have an object variable that has many
things attached to it, the question is how to refer to those attached things. In
Python, the key syntax idea is borrowed from module syntax: Just as you
describe functions attached to modules by giving the module name, a period,

41

How
namespaces
prevent
collisions.

Modules can
contain data
variables in
addition to
functions.

Referring to
object
attributes and
methods.

Using dir to
see what is
attached to an
object.

3.15. EXERCISE THAT INCLUDES USING A MODULE

then the function name, you describe things attached to a Python object by
giving the variable name, a period, then the attribute or method name.

The syntax of operations with or by attributes and methods should also
seem familiar to you: If you want to call an object’s methods, you use the
same syntax as for functions (i.e., with a calling list given by parenthesis);
attributes of objects are in turn read and set attributes just like they were
regular variables (i.e., with an equal sign).

Thus, for instance, if I have a list object mylist, and I want to use
one of the methods attached to that object (e.g., reverse), I would type
inmylist.reverse(). This method reverses all the elements in the object,
in place, and so it does not require the passing in of any arguments: The
data to reverse is in mylist itself (note the empty argument list between the
parenthesis).

If you can attach attributes and methods to an object, you will want a
way of viewing all the attributes and methods that are attached. A good
interactive development environment will give nicely formatted ways to do
this, but if all you have is a Python interpreter, type dir(x), where x is the
object name, to list (approximately) all attributes and methods attached to an
object.

Lastly, as a teaser, here’s an idea I want you to think about prior to our
introduction of objects in Ch. 7: Nearly everything in Python is an object.
Everything. Thus, what I’ve been calling variables (integers, floats, strings,
lists, etc.) are not variables in the traditional Fortran, IDL, Matlab, etc. sense
but instead objects. Even functions are objects. This feature of Python will
end up having profound implications and will enable us to write programs
we never could in other languages traditionally used in the atmospheric and
oceanic sciences.

3.15 Exercise that includes using a module

> Exercise 11 (Using functions from a module to do calculations on
data):
Pretend you have the list of temperatures T you saw earlier:

T = [273.4, 265.5, 277.7, 285.5]

Write code that will calculate the average of the maximum and minimum of
T. Hint: The NumPy package has a max function and a min function that
can look through a list of numerical values and return the maximum and

42

3.16. EXCEPTION HANDLING

minimum value, respectively. The single argument they take is the list of
numerical values.

Solution and discussion: Here’s code that will do the trick:

import numpy

T = [273.4, 265.5, 277.7, 285.5]
maxT = numpy.max(T)

minT = numpy.min(T)

avg_max_min = 0.5 * (maxT + minT)

3.16 Exception handling

In traditional Fortran, one common way of checking for and processing pro-
gram error states is to write an “if” test for the error state and then execute
a stop statement to stop program execution and output an informative mes-
sage. In Python, you can accomplish the same thing with the raise state-
ment: If you want the program to stop when you have an error, you throw an
exception with a raise statement. Here’s an example:

Example 22 (Using raise):

Consider the function area we defined in Example 15. How would we
put in a test to ensure the user would not pass in a negative radius? One
answer: We could put in an if test for a negative radius and if true, execute
a raise statement:

def area(radius, pi=None):
if radius < 0:
raise ValueError, ’radius negative’
area = pi * (radius**2)
return area

The syntax for raise is the command raise followed by an exception class
(in this case I used the built-in exception class ValueError, which is com-
monly used to denote errors that have to do with bad variable values), then a
comma and a string that will be output by the interpreter when the raise is
thrown.

43

Throwing
exceptions
and raise.

Exceptions
are not the
same as
Fortran stop
statements.

How the
interpreter
processes a
try/except
block.

3.16. EXCEPTION HANDLING

Raising an exception is not exactly the same as a Fortran stop statement
(though sometimes it will act the same). In the latter, program execution
stops and you are returned to the operating system level. In the former, an
exception stops execution and sends the interpreter up one level to see if
there is some code that will properly handle the error. This means that in
using raise, you have the opportunity to gracefully handle expected errors
without causing the entire program to stop executing.

In Example 22, we saw how to create an exception, but I didn’t show you
how to handle the exception. That is, I didn’t show you how in Python to
tell the interpreter what to do if a routine it calls throws an exception. The
try/except statement is Python’s exception handler. You execute the block
under the try, then execute the excepts if an exception is raised. Consider
this example:

Example 23 (Handling an exception):

Assume we have the function area as defined in Example 22 (i.e., with
the test for a negative radius). Here is an example of calling the function
area using try/except that will gracefully recognize a negative radius and
call area again with the absolute value of the radius instead as input:

rad = -2.5
try:

a = area(rad, pi=3.14)
except ValueError:

a = area(abs(rad), pi=3.14)

When the interpreter enters the try block, it executes all the statements in
the block one by one. If one of the statements returns an exception (as the
first area call will because rad is negative), the interpreter looks for an
except statement at the calling level (one level up from the first area call,
which is the level of calling) that recognizes the exception class (in this case
ValueError). If the interpreter finds such an except statement, the inter-
preter executes the block under that except. In this example, that block
repeats the area call but with the absolute value of rad instead of rad itself.
If the interpreter does not find such an except statement, it looks another
level up for a statement that will handle the exception; this occurs all the
way up to the main level, and if no handler is found there, execution of the
entire program stops.

44

3.17. SUMMARY

In the examples in this section, I used the exception class ValueError.
There are a number of built-in exception classes which you can find listed
in a good Python reference (e.g., TypeError, ZeroDivisionError, etc.)
and which you can use to handle the specific type of error you are protecting
against.* I should note, however, the better and more advanced approach is
to define your own exception classes to customize handling, but this topic is
beyond the scope of this book.

Exception
classes.

ww johnny-lin.com/comic Licensed under a Creative Commons BY-NC-SA 3.0 licénse- |

724

b
N
Lif &Johnson 11-07

Ph.D. Student Hell

3.17 Summary

In many ways, basic Python variable syntax and control structures look a
lot like those in traditional compiled languages. However, Python includes
a number of additional built-in data types, like dictionaries, which suggest
there will be more to the language than meets the eye; in the rest of this
book, we’ll find those data structures are very powerful (just building up the
suspense level ®). Other features of Python that usually differ from tradi-
tional compiled languages include: Python variables are dynamically typed,
so they can change type as the program executes; indentation whitespace is
significant; imported module names organize the namespace of functions and

4See http://docs.python.org/library/exceptions.html for a listing of built-in exception
classes (accessed August 17, 2012).

45

3.17. SUMMARY

module data variables; and exceptions can be handled using the try/except
statement.

Finally, seeing all this Python code may make you wonder whether there
is a standard style guide to writing Python. Indeed, there is; it’s called PEP
8 (PEP stands for “Python Enhancement Proposal”) and is online at http:
//www.python.org/dev/peps/pep-0008.

The Python
style guide.

46

