
JohnnyWei-Bing Lin

A Hands-On Introduction to Using
Python in the Atmospheric and

Oceanic Sciences

http://www.johnny-lin.com/pyintro

2012



c© 2012 Johnny Wei-Bing Lin.
Some rights reserved. Printed version: ISBN 978-1-300-07616-2. PDF ver-
sions: No ISBNs are assigned.

This work is licensed under the Creative Commons Attribution-Noncom-
mercial-Share Alike 3.0 United States License (CC BY-NC-SA). To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

us or send a letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA.

Who would not want to pay money for this book?: if you do not need
a black-and-white paper copy of the book, a color PDF copy with functional
hyperlinks, have limited funds, or are interested in such a small portion of
the book that it makes no sense to buy the whole thing. The book’s web site
(http://www.johnny-lin.com/pyintro) has available, for free, PDFs of every
chapter as separate files.

Who would want to pay money for this book?: if you want a black-
and-white paper copy of the book, a color PDF copy with functional hy-
perlinks, or you want to help support the author financially. You can buy
a black-and-white paper copy of the book at http://www.johnny-lin.com/

pyintro/buypaper.shtml and a hyperlink-enabled color PDF copy of the book
at http://www.johnny-lin.com/pyintro/buypdf.shtml.

A special appeal to instructors: Instruction at for-profit institutions, as
a commercial use, is not covered under the terms of the CC BY-NC-SA, and
so instructors at those institutions should not make copies of the book for
students beyond copying permitted under Fair Use. Instruction at not-for-
profit institutions is not a commercial use, so instructors may legally make
copies of this book for the students in their classes, under the terms of the CC
BY-NC-SA, so long as no profit is made through the copy and sale (or Fair
Use is not exceeded). However, most instruction at not-for-profit institutions
still involves payment of tuition: lots of people are getting paid for their
contributions. Please consider also paying the author of this book something
for his contribution.

Regardless of whether or not you paid money for your copy of the book,
you are free to use any and all parts of the book under the terms of the CC
BY-NC-SA.



Chapter 1

What Is and Why Python?

1.1 Python: The good and the bad
So, what’s with all the fuss about Python? If you’re reading this book, you
might have heard about Python from a co-worker who swears by it, heard a
reference to the language in a talk at a conference, or followed a link from
a page on scientific computing. When you’ve asked others about Python,
they might have thrown out words like “object-oriented,” “interpreted,” or
“open-source.” What does all this mean?

This book answers that question, from the standpoint of a researcher in
the atmospheric or oceanic sciences. That doesn’t mean, however, there isn’t
a shorter answer to the question. Here is one summary list of the attributes
and features of Python:

• Structure: Python is a multi-paradigm language, and can be used for
scripting, procedural programming, as a fully native object-oriented
(OO) language, and as a functional language.

• Interpreted: Python is loosely or dynamically typed and interactive.
There is no separate compiler but rather commands typed into the in-
terpreter are automatically compiled, linked (as needed) and executed.

• Data structures: Python has a robust built-in set of data types, and
users are free to define additional structures.

• Syntax: Easy to read and includes an array syntax that is similar to
Matlab, IDL, and Fortran 90 (no loops!).

• Platform independent, open-source, and free!

1



1.2. EXAMPLES OF AOS USES FOR PYTHON

But what do these features allow you to do? Here is where Python users
start waxing enthusiastically. First, because of Python’s concise but natu-
ral syntax, for both arrays and non-arrays, programs are exceedingly clear
and easy to read; as the saying goes, “Python is executable pseudocode.

“Python is
executable

pseudocode.”

Perl is executable line noise.”1 Second, because the language is interpreted,
development is much easier; you do not have to spend extra time with ma-
nipulating a compiler and linker. Third, the object-orientation makes code
more robust/less brittle, and the built-in set of data structures are very pow-
erful and useful (e.g., dictionaries). Fourth, Python is designed with a built-
in namespace management structure which naturally prevents variable and
function collisions. In contrast with linking multiple Fortran libraries, where
you can easily overwrite a function from one library with a function from
another, in Python you have to work at causing such a collision. Finally,
Python’s open-source pedigree added with a large user and developer base
in industry, as well as science—institutions supporting AOS Python include
Lawrence Livermore National Laboratory (LLNL)’s Program for Coupled
Model Diagnostics and Intercomparison (PCMDI) and National Center for
Atmospheric Research (NCAR)’s Computational Information Systems Lab-
oratory (CISL)—means that your programs can take advantage of the tens
of thousands of Python packages that exist. Multiple visualization packages
are available, some numerical libraries, packages that deliver tight intercon-
nects with compiled languages (Fortran via f2py and C via SWIG), memory
caching, webservices, graphical user interface (GUI) programming, etc. You
are not limited to only what one vendor can provide, or even what only the
scientific community can provide!

To be fair, Python has real disadvantages, including that pure Python
Python’s dis-

advantages. code runs much slower than compiled code, there are comparatively few
scientific libraries compared to Fortran, and documentation and support for
new science users is relatively sparse. There are tools to overcome the speed
penalty, the collection of scientific libraries is growing, and science support
resources are becoming more robust (which this book hopefully contributes
to), but these are real issues. For many, if not most, AOS applications, how-
ever, the strengths of Python outweigh the weaknesses.

1.2 Examples of AOS uses for Python
But this all sounds kind of abstract: what are some examples of what Python
can do for AOS users? Figure 1.1 shows examples of typical AOS visual-

1I don’t know who first said this, but you can find one instance of this quote at http:
//mindview.net/Books/Python/ThinkingInPython.html (accessed March 14, 2012).

2



1.2. EXAMPLES OF AOS USES FOR PYTHON

ization tasks (skew-T and meteograms), using the PyNGL package, which
implements all the primitives (and some of the higher-level functions) of the
NCAR Graphics Language (NGL). Figure 1.2 shows screenshots of an ap-
plication (WxMAP2) written in Python that visualizes and delivers weather
maps of numerical weather prediction model results. And Figure 1.3 shows
an application written in Python (VisTrails) that manages provenance in the
context of geoscientific analysis and visualization: VisTrails enables you to
analyze and visualize a dataset while at the same time keeping a record of the
operations you did. As these examples show, Python can be used for nearly
any analysis and visualization task you would want to do in AOS research
and operations.

As neat as these examples are, however, the greatest advantage of Python
Python
enables a
unified
workflow.

to AOS work (in my opinion) is how it enables one to have a truly unified
workflow: analysis, visualization, and workflow management are all (poten-
tially) integrated together. Figure 1.4 illustrates this potential. As shown in
the figure, the problem encountered by the Northeast Regional Climate Cen-
ter (NRCC) was how to unify the many different components of the Applied
Climate Information System: data ingest, distribution, storage, analysis, web
services (tasks and formats in black). The traditional solution would be to
cobble together a crazy mix of shell scripts, compiled code, makefiles, Mat-
lab/IDL scripts, and a web server. (And when you think of it, most AOS
workflows are like that; a crazy mix of tools that talk to each other through

3



1.2. EXAMPLES OF AOS USES FOR PYTHON

Figure 1.1: Visualization of a skew-T plot and a meteogram using PyNGL.
These plots are taken from the PyNGL website http://www.pyngl.ucar.edu.
See http://www.pyngl.ucar.edu/Examples/gallery.shtml for the source code
to make the plots. Plots are copyright, University Corporation for At-
mospheric Research. Graphics were generated with PyNGL, developed at
NCAR and sponsored by NSF. Used by permission.

text pipes or files.) NRCC’s solution: Do it all in Python (package names
in red), and the resulting single environment of shared state created a more
powerful, flexible, and maintainable system than would otherwise have been
possible.

So, this is why I’m so excited about Python and why I wrote this book!
Python is a flexible, powerful, open, and free language whose native object-
oriented structure permits more robust programs to be written. The result is
a language that enables better atmospheric and oceanic sciences to be done
more easily at less cost, both in time and money. The bottom line is that
Python enables me to do my science more easily and reliably; how cool is
that?

4



1.2. EXAMPLES OF AOS USES FOR PYTHON

Figure 1.2: Screenshots taken from the WxMAP2 package web site. See:
http://sourceforge.net/projects/wxmap2. These screenshots are by Michael
Fiorino (NOAA Earth System Research Laboratory, Boulder, CO.) and are
used by permission.

Figure 1.3: Session of the VisTrails visualization and data workflow and
provenance management system; salinity data in the Columbia River es-
tuary is graphed. See: http://www.vistrails.org/index.php?title=File:Corie
example.png&oldid=616. The screenshot is by Steven Callahan and is used
by permission.

5



1.2. EXAMPLES OF AOS USES FOR PYTHON

Figure 1.4: Image from: AMS talk by William Noon, Northeast Re-
gional Climate Center, Ithaca, NY, http://ams.confex.com/ams/91Annual/
flvgateway.cgi/id/17853?recordingid=17853. Used by permission.

6


