
Dynamic Data Structures and First-Class Citizens:
Python Features that Can Make Modeling More

Flexible and Powerful

Johnny Wei-Bing Lin
Computing and Software Systems Division,

University of Washington Bothell
Physics and Engineering Department, North Park University

February 2, 2016

Slides version date: February 2, 2016. Presented at the Python in
the Geosciences seminar, University of Washington Seattle, WA. This
work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 United States License.

Outline

Review of Python Lists, Dictionaries, and Functions

First-Class Citizenship in Python

Re-imagining Model Management

Conclusions

For more information

Review of Python Lists, Dictionaries, and Functions

Lists and Dictionaries

I Lists are ordered sequences.

I They are like arrays, except each of the items do not have to
be of the same type. A given list element can be set to
anything, even another list.

I Dictionaries are unordered lists whose elements are
referenced by keys (not by position).

I Keys can be anything that can be uniquely named and sorted.
In practice, keys are usually integers or strings. Values can be
anything.

Review of Functions

I Functions in Python accept input via arguments and outputs
via a return variable.

I Python also has a nifty way of passing in lists of arguments
and keywords (as a list/tuple and dictionary, respectively):

args = [3,]

kwds = {’pi’:3.14}

a = area(*args, **kwds)

print(a)

First-Class Citizenship in Python

What’s a First-Class Citizen? I

Definition: From Wikipedia:1

In programming language design, a first-class citizen
(also object, entity, or value) in a given programming
language is an entity which supports all the operations
generally available to other entities. These operations
typically include being passed as a parameter, returned
from a function, and assigned to a variable.

What’s a First-Class Citizen? II

Examples of first-class citizens in Fortran 77:

I Yes: integer, real, character, arrays.

I No: Functions, subroutines, programs, libraries.

Examples of first-class citizens in Python: Basically everything.

1https://en.wikipedia.org/w/index.php?title=First-class_

citizen&oldid=653520885

https://en.wikipedia.org/w/index.php?title=First-class_citizen&oldid=653520885
https://en.wikipedia.org/w/index.php?title=First-class_citizen&oldid=653520885

Functions Can Be Set as Variables in Python I

Consider this area function:

def area(radius, pi=3.14):

return pi * (radius**2)

Say the following lines of code are executed:

print(area(3))

myarea = area

print(myarea(3))

set = { ’value’:3, ’area’:area, ’area2’:myarea }

print(set[’area’](3))

print(set[’area’](set[’value’]))

print(set[’area2’](set[’value’]))

What will occur?

Functions Can Be Set as Variables in Python II

The following is output:

28.26

28.26

28.26

28.26

28.26

All the calling references given above are the same.

Functions Can Be Set as Variables in Python III

Lessons from this example:

I Functions (and modules) are like any other object or variable
and can be stored as a variable or in any appropriate data
structure. Any reference to a function of whatever “kind”
(e.g., a list entry) can be called (if callable).

I Dictionaries and lists (and calling) are mutable at runtime.
Thus, you don’t have to know ahead of the runtime what
functions you will use. You can have your program choose
your functions automatically while the programming is
running.

Functions Can Be Passed as Parameters in Python I

Consider the following Newtonian heating/cooling model of an
object:2

dT

dt
= k(T − Tenv)

where the T of the object is in K, t is in hrs, and the
environmental temperature is Tenv. k is a constant.

Below I code two different functions for dT/dt for two different
sets of k and Tenv, and then I write a function to solve for T using
Euler’s method (ugly, I know).

Functions Can Be Passed as Parameters in Python II

import numpy as N

def dTdt_one(T):

k = -1.335

return k * (T - 25.)

def dTdt_two(T):

k = -2.0

return k * (T - 35.)

def calculate_temps(dTdt, start=0.0, stop=5.0,

delta_t=0.001, T0=6.0):

num_pts = N.ceil(((stop - start) / delta_t) + 1)

times = (N.arange(num_pts) / (num_pts - 1.0) * end)

+ start

Functions Can Be Passed as Parameters in Python III

temps = N.zeros(N.shape(times), dtype=’d’)

temps[0] = T0

for i in xrange(1, N.size(times)):

Told = temps[i-1]

temps[i] = Told + (dTdt(Told) * delta_t)

return (times, temps)

calculate_temps(dTdt_one)

calculate_temps(dTdt_two)

Functions Can Be Passed as Parameters in Python IV
What this example illustrates:

I The parameter dTdt in calculate temps can be anything,
including a function.

I The parameter dTdt is substituted at runtime at the
calculate temps call.

I You do not have to hardwire in your function calls. I could
have just as easily make the calls in a loop:

for i in list_of_dTdts:

calculate_temps(i)

where the list list of dTdts is mutable at runtime. So, as
the program is running, it might make list of dTdts have 5
items one time then 1000 items the other, depending on
what’s going on in the rest of the program.

Functions Can Be Passed as Parameters in Python V

I If you’re concerned about dealing with different function
argument lists, just code your calls with the general *args
and **kwds parameter lists feature in Python.

2A problem in Shiflet & Shiflet 2014).

Re-imagining Model Management

Traditional vs. Modern Model Management

With traditional compiled languages:

I Static variable namespace management: Values are assigned
at compile time. You hard code it in (or store numbers in
arrays, or read it from a file).

I Static subroutine execution order: Set at compile time. Again,
you hard code it in.

But with Python’s dynamic data structures and first-class citizens
structure:

I Neither needs to be static.

I We can use dictionaries and/or Python objects to manage
both.

The qtcm hybrid Python-Fortran intermediate-level atmospheric
model implements these features.

The Neelin-Zeng Quasi-Equilibrium Tropical Circulation
Model (QTCM1)

Neelin & Zeng (1999) and Zeng et al. (1999)

I Intermediate-level atmospheric model.

I Vertical temperature and moisture profiles based upon
convective quasi-equilibrium assumption.

I Betts & Miller (1986) moist convective adjustment scheme.

I Includes radiative-convective feedback package.

I Resolution 5.625 deg longitude, 3.75 deg latitude.

I Reasonable simulation of tropical climatology, and also
includes Madden-Julian oscillation (MJO)-like variability.
Used in MJO studies, ENSO studies, etc.

I Written in Fortran.

Overview of the Python qtcm package

I Software infrastructure:
I Fortran: Numerics of QTCM1
I Python: User-interface wrapper that manages variables,

routine execution order, runs, and model instances.
I Connectivity: Through the program f2py:

I Almost automatically makes the Fortran routines and memory
space available to Python.

I You can set Fortran variables at the Python level, even at run
time.

I Two main classes of objects:
I Field: Key model variable and parameters.
I Qtcm: A model instance.

A simple qtcm run

from qtcm import Qtcm

inputs = {}

inputs[’runname’] = ’test’

inputs[’landon’] = 0

inputs[’year0’] = 1

inputs[’month0’] = 11

inputs[’day0’] = 1

inputs[’lastday’] = 30

inputs[’mrestart’] = 0

inputs[’compiled_form’] = \

’parts’

model = Qtcm(**inputs)

model.run_session()

I Configuration keywords:

I Output filenames will
contain the string given
by runname.

I Aquaplanet (set by
landon).

I Start from Nov 1, Year 1.
Run for 30 days.

I Start from a newly
initialized model state.

I Run the model using the
run session method.

I compiled form chooses the
model version.

Run sessions and a continuation run in qtcm

model = Qtcm(**inputs)

model.run_session()

model.u1.value = model.u1.value * 2.0

model.init_with_instance_state = True

model.run_session(cont=30)

I Make one run session, double the value of u1, make a continuation
run for 30 more days.

I All can be controlled interactively at runtime. (I could have used
getattr(’u1’) to manage the u1 attribute, for instance.)

Multiple qtcm model runs using a snapshot from a
previous run session

model.run_session()

mysnap = model.snapshot

model1.sync_set_py_values_to_snapshot(snapshot=mysnap)

model2.sync_set_py_values_to_snapshot(snapshot=mysnap)

model1.run_session()

model2.run_session()

I Snapshots are dictionaries that act as restart files.

I model1 and model2 are separate instances of the Qtcm class
and are truly independent (they share no variables or memory).

Runlists in qtcm make the model very modular

>>> model = Qtcm(compiled_form=’parts’)

>>> print model.runlists[’qtcminit’]

[’__qtcm.wrapcall.wparinit’, ’__qtcm.wrapcall.wbndinit’,

’varinit’, {’__qtcm.wrapcall.wtimemanager’: [1,]},

’atm_physics1’]

I Run lists specify a series of Python or Fortran methods, functions,
subroutines (or other run lists) to execute when the list is passed
into a call of the run list method.

I Routines in run lists are identified by strings. What routines the
model executes are fully changeable at run time.

I Example shows a list with two Fortran subroutines without input
parameters, a Python method without input parameters, a Fortran
subroutine with an input parameter, and another run list.

qtcm performance is competitive with the Fortran-only
QTCM1

Performance penalty
of hybrid-languge
model vs. the
Fortran-only version
of the model is
4–9%.

Wall-clock times (sec) for the average of three 365 day aquaplanet runs

using climatological sea surface temperature as the lower boundary

forcing (Lin 2008). All runs are executed as single threads.

Examples of qtcm uses: Conditionally explore parameter
space

Explore different
values of mixed-layer
depth (ziml) over a
set of 30-day runs,
as a function of
maximum zonal wind
associated with the
first baroclinic mode
(u1) magnitude,
until you find a case
where the maximum
of u1 is greater than
10 m/s.

import os

import numpy as N

maxu1 = 0.0

while maxu1 < 10.0:

iziml = 0.1 * maxu1

iname = ziml- + str(iziml) + m

ipath = os.path.join(proc, iname)

os.makedirs(ipath)

model = Qtcm(**inputs)

try:

model.sync_set_py_values_to_snapshot(snapshot=mysnapshot)

model.init_with_instance_state = True

except:

model.init_with_instance_state = False

model.ziml.value = iziml

model.runname.value = iname

model.outdir.value = ipath

model.run_session()

maxu1 = N.max(N.abs(model.u1.value))

mysnapshot = model.snapshot

del model

Examples of qtcm uses: Interactive modeling

The graphs are created interactively by the user.

The effects of climate model programming structure on
the modeling and analysis cycle

I Modeling has traditionally been a static exercise (i.e., set
parameters, run, analyze output).

I The flexibility of changing i/o, data, variables, subroutine
execution order, and the routines themselves at run time
means modeling no longer needs to be static.

I Modeling is now more dynamic: The modeling study can
adapt and change as the model runs.

Transforming the modeling and analysis cycle for climate
modeling studies

Traditional analysis sequence used in modeling studies:

Hypothesis Analysis Model Runs Code Human 
Input 

Transformed analysis sequence using qtcm-like tools:

More
Hypothesis

Analysis Model Runs Code
Computer 

Outlined arrows = mainly human input.
Gray-filled arrows = a mix of human and computer-controlled input.

Completely filled (black)-arrows = purely computer-controlled input.

Automating model output analysis makes more science
possible

I Model output analysis can now automatically control future
model runs. Try doing that with a kludge of shell scripts,
pre-processors, Matlab scripts, etc.!

I Certain science questions that used to be difficult to access
are now more possible to access:

I For certain questions, code more closely matches user thought
processes.

I Automation enables more comprehensive searching of the
solution space.

I Each increase in code complexity can be more productive with
a lower per line error rate.

Conclusions

I Dynamic data structures and first-class citizenship enable
dynamic namespace subroutine execution management.

I A model utilizing these features in Python, especially in an
OOP framework, can make modeling easier and more reliable
and also enable researchers to investigate previously
inaccessible (or difficult to access) questions.

For more information

I Geosci. Model Dev. paper on qtcm (many portions of this
presentation copied/adapted from this paper):

http://www.geosci-model-dev.net/2/1/2009

I The qtcm Python package website:
http://www.johnny-lin.com/py_pkgs/qtcm

I The Neelin-Zeng QTCM1 website:
http://www.atmos.ucla.edu/~csi/QTCM/qtcm.html

I More on OOP and the atmospheric sciences (chapter 8):
http://www.johnny-lin.com/pyintro

I Interested in growing the atmospheric-oceanic sciences Python
community? Come join PyAOS:

http://pyaos.johnny-lin.com

http://www.geosci-model-dev.net/2/1/2009
http://www.johnny-lin.com/py_pkgs/qtcm
http://www.atmos.ucla.edu/~csi/QTCM/qtcm.html
http://www.johnny-lin.com/pyintro
http://pyaos.johnny-lin.com

	Review of Python Lists, Dictionaries, and Functions
	First-Class Citizenship in Python
	Re-imagining Model Management
	Conclusions
	For more information

