
Dynamic Data Structures and First-Class Citizens:
Python Features That Can Make Data Analysis

More Flexible and Powerful

Johnny Wei-Bing Lin
University of Washington Bothell and North Park University

July 27, 2016

Slides version date: July 30, 2016. Presented at the UCLA Depart-
ment of Atmospheric and Oceanic Sciences, Los Angeles, CA. This
work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 United States License.

Outline

What Is and Why Python?

Prologue Data Analysis Exercise

Review of Python Lists, Dictionaries, and Functions

First-Class Citizenship in Python

Applying Dynamic Structures and First-Class Citizens to Data
Analysis

An Implication for Modeling

For More Information and an Advertisement

Conclusions

What is Python?

I Multi-paradigm: Scripting, procedural, and fully native
object-oriented (O-O) language.

I Interpreted: Loosely/dynamically-typed and interactive.

I Array syntax: Similar to MATLAB, IDL, and Fortran 90 (no
loops!).

I Platform independent, open-source, and free!

Python’s advantages I

I Concise but natural syntax, both arrays and non-arrays, makes
programs clearer. “Python is executable pseudocode. Perl is
executable line noise.”

I No compiling and no declaring variables makes development
easier.

I Object-orientation makes code more robust/less brittle.

Python’s advantages II

I Tight interconnects with
compiled languages (Fortran
via f2py and C via SWIG)
when speed is vital.

I Many packages available
that are developed by
non-scientists (e.g.,
webservices).

I Built-in set of data
structures are very powerful
and useful (e.g.,
dictionaries).

(http://xkcd.com/353/)

http://xkcd.com/353/

Python’s disadvantages

I Runs much slower than compiled code (but there are tools to
overcome this).

I Relatively sparse collection of scientific libraries compared to
Fortran (but this is growing).

Example of analysis, visualization, and workflow
management and integration

I Problem: Many different components of the Applied Climate Information System.
I Solution: Do it all in Python: A single environment of shared state vs. a crazy mix of shell scripts, compiled

code, MATLAB/IDL scripts, and web server makes for a more powerful, flexible, and maintainable system.

I Image from: AMS talk by Bill Noon, Northeast Regional Climate Center, Ithaca, NY,
http://ams.confex.com/ams/91Annual/flvgateway.cgi/id/17853?recordingid=17853.

http://ams.confex.com/ams/91Annual/flvgateway.cgi/id/17853?recordingid=17853

Prologue Data Analysis Exercise

Prologue data analysis exercise I

You have three data files named data0001.txt, data0002.txt, and
data0003.txt. Each data file contains a single column of data of
differing lengths. You also the following readdata function that
reads each file and puts the file’s contents into a 1-D NumPy array:

import numpy as N

def readdata(filename):

fileobj = open(filename, ’r’)

outputstr = fileobj.readlines()

fileobj.close()

outputarray = N.zeros(len(outputstr), dtype=’f’)

for i in xrange(len(outputstr)):

outputarray[i] = float(outputstr[i])

return outputarray

Prologue data analysis exercise II

Thus,

data1 = readdata(’data0001.txt’)

will give you a 1-D NumPy array data1 that contains all the
values in the file data0001.txt.

Prologue data analysis exercise III

Our assignment: Write a program that:

I Reads in the data from each file using the readdata function
above and then

I Calculates the mean, median, and standard deviation of the
values in each data file, for each data file, saving the values to
variables for possible later use.

Review of Python Lists, Dictionaries, and Functions

Lists and tuples I

I Lists are ordered sequences.

I They are like arrays, except each of the items do not have to
be of the same type. A given list element can be set to
anything, even another list.

I Square brackets (“[]”) start and stop (delimit) a list.

I Put a comma between list elements. If you have a one
element list, put a comma after the element.

I List element addresses start with zero, so the first element of
list a is a[0], the second is a[1], etc.

I Length of a list is obtained using the len function, e.g.,
len(a).

Lists and tuples II
I Say you typed the following in the Python interpreter:

a = [2, 3.2, ’hello’, [-1.2, ’there’, 5.5]]

What is len(a)? What does a[1] equal to? a[3]?
a[3][1]? Share your answers with your neighbor.

I Elements can also be addressed starting from the end. a[-1]

is the last element in list a, is the next to last element, etc.
I Slicing a list:

I Element addresses in a range are separated by a colon.
I The lower limit is inclusive, and the upper limit is exclusive.
I For the list a you just typed in, what would a[1:3] return?

I Lists are mutable (i.e., you can add and remove items, change
the size of the list) while tuples are immutable.

Lists and tuples III
I Tuples use parenthesis as delimiters, e.g.:

b = (3.2, ’hello’)

I Note: You can, to an extent, treat strings as lists. Thus, if a
= "hello", then a[1:3] will return "el".

Dictionaries I

I Dictionaries are unordered lists whose elements are
referenced by keys (not by position).

I Keys can be anything that can be uniquely named and sorted.
In practice, keys are usually integers or strings. Values can be
anything.

I Curly braces (“{}”) delimit a dictionary. Dictionary elements
are key:value pairs, separated by a colon.

I Dictionaries are very powerful. This one data structure
revolutionized my code.

Dictionaries II
I Say you typed the following in the Python interpreter:

a = {’a’:2, ’b’:3.2, ’c’:[-1.2, ’there’, 5.5]}
I Dictionary elements are referenced like lists, except the key is

given in place of the element address.
I For the previous dictionary:

I What does a[’b’] return?
I What does a[’c’][1] return?

Functions I

I Functions in Python, in theory, work both like functions and
subroutines in Fortran, in that:

I Input comes via arguments.
I Output occurs through:

I A return variable (like Fortran functions) and/or
I Through arguments (like Fortran subroutines)

I In practice, functions in Python are written to act like Fortran
functions, with a single output returned. If you want multiple
returns, it’s easier to put them into a list or use objects.

I Function definitions:
I Begin with def.
I Contents of the function after the def line are indented in “x”

spaces (where “x” is constant). Usually, people indent 4
spaces.

Functions II
I Arguments:

I Python accepts both positional and keyword arguments:
I Positional arguments are usually for required input.
I Keyword arguments are usually for optional input.
I Typically, keyword arguments are set to some default value.

I Example of a function definition and calls:

def area(radius, pi=3.14):

area = pi * (radius**2)

return area

a = area(3)

b = area(3, pi=3.1415)

I Python also has a nifty way of passing in lists of arguments
and keywords (as a list/tuple and dictionary, respectively):

Functions III

args = [3,]

kwds = {’pi’:3.1415}

a = area(*args, **kwds)

First-Class Citizenship in Python

What’s a first-class citizen? I

Definition: From Wikipedia:1

In programming language design, a first-class citizen
(also object, entity, or value) in a given programming
language is an entity which supports all the operations
generally available to other entities. These operations
typically include being passed as a parameter, returned
from a function, and assigned to a variable.

What’s a first-class citizen? II

Examples of first-class citizens in Fortran 77:

I Yes: integer, real, character, arrays.

I No: Functions, subroutines, programs, libraries.

Examples of first-class citizens in Python: Basically everything.

1https://en.wikipedia.org/w/index.php?title=First-class_

citizen&oldid=653520885

https://en.wikipedia.org/w/index.php?title=First-class_citizen&oldid=653520885
https://en.wikipedia.org/w/index.php?title=First-class_citizen&oldid=653520885

Functions can be set as variables in Python I
Consider this area function:

def area(radius, pi=3.14):

return pi * (radius**2)

Say the following lines of code are executed:

print(area(3))

myarea = area

print(myarea(3))

set = { ’value’:3, ’area’:area, ’area2’:myarea }

print(set[’area’](3))

print(set[’area’](set[’value’]))

print(set[’area2’](set[’value’]))

Question: Predict what will occur, then share with your answer
with your neighbor.

Functions can be set as variables in Python (solution) I

The following is output:

28.26

28.26

28.26

28.26

28.26

All the calling references given above are the same!

Functions can be set as variables in Python (solution) II

Lessons from this example:

I Functions (and modules) are like any other object or variable
and can be stored as a variable or in any appropriate data
structure. Any reference to a function of whatever “kind”
(e.g., a list entry) can be called (if callable).

I Dictionaries and lists (and calling) are mutable at runtime.
Thus, you don’t have to know ahead of the runtime what
functions you will use. You can have your program choose
your functions automatically while the program is
running.

Functions can be passed as parameters in Python I

Consider the following Newtonian heating/cooling model of an
object:2

dT

dt
= k(T − Tenv)

where the T of the object is in K, t is in hrs, and the
environmental temperature is Tenv. k is a constant.
Below I code two different functions for dT/dt for two different
sets of k and Tenv, and then I write a function to solve for T using
Euler’s method (ugly, I know).

Functions can be passed as parameters in Python II

import numpy as N

def dTdt_one(T):

k = -1.335

return k * (T - 25.)

def dTdt_two(T):

k = -2.0

return k * (T - 35.)

def calculate_temps(dTdt, start=0.0, stop=5.0,

delta_t=0.001, T0=6.0):

num_pts = N.ceil(((stop - start) / delta_t) + 1)

times = (N.arange(num_pts) / (num_pts - 1.0) * end)

+ start

Functions can be passed as parameters in Python III

temps = N.zeros(N.shape(times), dtype=’d’)

temps[0] = T0

for i in xrange(1, N.size(times)):

Told = temps[i-1]

temps[i] = Told + (dTdt(Told) * delta_t)

return (times, temps)

calculate_temps(dTdt_one)

calculate_temps(dTdt_two)

Question: What will happen with the two calculate temps

calls?

2A problem in Shiflet & Shiflet (2014).

Functions can be passed as parameters in Python
(solution) I

I This example is silly: No one writes a new function when you
change some constants (k and Tenv, in this case).

I But you can imagine defining a more complicated function for
dT/dt. Or importing a function from another module: Since
functions are variables, once you have a function name in your
namespace, you can pass it in as a parameter.

I The key: dT/dt in calculate temps is a parameter. It is
substituted at runtime at the calculate temps call.

Functions can be passed as parameters in Python
(solution) II

I You do not have to hardwire in your function calls. I could
have just as easily make the calls in a loop:

for i in list_of_dTdts:

calculate_temps(i)

where the list list of dTdts is mutable at runtime. So, as
the program is running, it might make list of dTdts have 5
items one time then 1000 items the other, depending on
what’s going on in the rest of the program.

I If you’re concerned about dealing with different function
argument lists, just code your calls with the general *args
and **kwds parameter lists feature in Python.

Solutions To Our Prologue Data Analysis Exercise:
Applying Dynamic Structures and First-Class

Citizens to Data Analysis

Solution One: Fortran-like structure with several loops I

On the next slide is a solution that puts all the file open, closing,
read, and conversion into a function, so you don’t have to type
open, etc., three times. The way it’s written, however, looks very
Fortran-esque, with variables initialized and/or created explicitly
(e.g., from a function call).

Note: I assume readdata is defined earlier in the code.

Solution One: Fortran-like structure with several loops II

import numpy as N

data1 = readdata(’data0001.txt’)

data2 = readdata(’data0002.txt’)

data3 = readdata(’data0003.txt’)

mean1 = N.mean(data1)

median1 = N.median(data1)

stddev1 = N.std(data1)

mean2 = N.mean(data2)

median2 = N.median(data2)

stddev2 = N.std(data2)

mean3 = N.mean(data3)

Solution One: Fortran-like structure with several loops III

median3 = N.median(data3)

stddev3 = N.std(data3)

Solution One: Fortran-like structure with several loops IV

I With programs written Fortran-style, anytime you specify a
variable, whether a filename or data variable, or an analysis
function, you type it in.

I This is fine if you have only three files, but what if you have a
thousand? Very quickly, this kind of programming becomes
not-very-fun.

Solution Two: Store results in arrays I

One approach seasoned Fortran programmers will take to making
this code better is to put the results (mean, median, and standard
deviation) into arrays, and have the element’s position in the array
correspond to data0001.txt, etc. Then you can use a for loop to
go through each file, reading in the data, and making the
calculations:

I This means you don’t have to type in the names of every
mean, etc. variable to do the assignment.

I Using Python’s powerful string type to create the filenames
makes this approach even easier.

Solution Two: Store results in arrays II

import numpy as N

num_files = 3

mean = N.zeros(num_files)

median = N.zeros(num_files)

stddev = N.zeros(num_files)

for i in xrange(num_files):

filename = ’data’ + (’000’+str(i+1))[-4:] + ’.txt’

data = readdata(filename)

mean[i] = N.mean(data)

median[i] = N.median(data)

stddev[i] = N.std(data)

Solution Two: Store results in arrays III

This code is more compact and scales up to any num files

number of files. But I’m still bothered by two things:

I What if the filenames aren’t numbered? How then do you
relate the element position of the mean, etc. arrays to the file
the quantity is calculated using? Variable names (e.g., mean1
do convey information and connect that label to a value.

I Why should I predeclare the size of mean, etc.? If Python is
dynamic, shouldn’t I be able to arbitarily change the size of
mean, etc. on the fly as the code executes?

Solution Three: Store results in dictionaries I

How are dictionaries useful here?:

I We previously said variable names connect labels to values.
What does that mean? That a string (the variable name) is
associated with a value (scalar, array, etc.).

I What do we know in Python that can associate a string with
a value? A dictionary.

I So, setting a value to a key that is the variable name (or
something similar) is effectively the same as setting a variable.

I But this can be done dynamically (i.e., you don’t have to type
it in) and can accomodate any string, not just those
numbered numerically.

Solution Three: Store results in dictionaries II
Here is a solution that uses dictionaries to hold the statistical
results. The keys for the dictionary entries are the filenames:

import numpy as N

mean = {} #- Initialize as empty dictionaries

median = {}

stddev = {}

list_of_files = [’data0001.txt’, ’data0002.txt’,

’data0003.txt’]

for ifile in list_of_files:

data = readdata(ifile)

mean[ifile] = N.mean(data)

median[ifile] = N.median(data)

stddev[ifile] = N.std(data)

Solution Three: Store results in dictionaries III
Comments on this solution:

I Instead of creating the filename each iteration of the loop, I
create a list of files and iterate over that. Here it’s hard coded
in, but this suggests if we could get access a directory listing
of data files, we could generate the list automatically. I can, in
fact, do this with the glob module:

import glob

list_of_files = glob.glob("data*.txt")

You can sort list of files using list methods or some other
sorting function.

I Statistical values are referenced intelligently: To access, say,
the mean of data0001.txt, type in mean[’data0001.txt’].

Solution Four: Store results and functions in dictionaries I

The last solution was pretty good, but here’s one more twist:
What if I wanted to calculate more than just the mean, median,
and standard deviation? What if I wanted to calculate 10 metrics?
30? 100? Can I make my program flexible in that way?

Yes! Dictionaries are the key: The key:value pairs enable you to put
anything in as the value, even functions and other dictionaries. So:

I Store the function objects themselves in a dictionary of
functions, linked to the keys ’mean’, ’median’, and
’stddev’.

I Make a results dictionary that will hold the dictionaries of
the mean, median, and standard deviation results. That is,
results is a dictionary of dictionaries.

Solution Four: Store results and functions in dictionaries II

import numpy as N

import glob

metrics = {’mean’:N.mean, ’median’:N.median, ’stddev’:N.std}

list_of_files = glob.glob("data*.txt")

results = {} #- Initialize results dictionary

for imetric in metrics.keys(): # for each statistical metric

results[imetric] = {}

for ifile in list_of_files:

data = readdata(ifile)

for imetric in metrics.keys():

results[imetric][ifile] = metrics[imetric](data)

This program is now generally written to calculate mean, median,
and standard deviation for as many files there are in the working
directory that match "data*.txt" and can be extended to
calculate as many statistical metrics as desired.

An Implication for Modeling

Make subroutine execution arbitrary at runtime I

I Dictionaries and lists are mutable at runtime: They can
change order, content, and size as the program runs.

I If we store functions in dictionaries and lists, we can run them
in any order and have the program automatically change that
order as the program runs.

I Example from the qtcm hybrid Python-Fortran package (Lin
2009):
>>> model = Qtcm(compiled_form=’parts’)

>>> print model.runlists[’qtcminit’]

[’__qtcm.wrapcall.wparinit’, ’__qtcm.wrapcall.wbndinit’,

’varinit’, {’__qtcm.wrapcall.wtimemanager’: [1,]},

’atm_physics1’]

I Routines here are specified by strings that link to the function
object. They are stored in a list I can change while the
program runs.

Transforming the modeling and analysis cycle for climate
modeling studies (Lin 2009)

Traditional analysis sequence used in modeling studies:

Hypothesis Analysis Model Runs Code Human 
Input 

Transformed analysis sequence using qtcm-like tools:

More
Hypothesis

Analysis Model Runs Code
Computer 

Outlined arrows = mainly human input.
Gray-filled arrows = a mix of human and computer-controlled input.

Completely filled (black)-arrows = purely computer-controlled input.

For more information and an advertisement

I Geosci. Model Dev. paper on qtcm:
http://www.geosci-model-dev.net/2/1/2009/

I The qtcm Python package website:
http://www.johnny-lin.com/py_pkgs/qtcm/

I The Neelin-Zeng QTCM1 website:
http://www.atmos.ucla.edu/~csi/QTCM/qtcm.html

I Interested in learning Python or growing the
atmospheric-oceanic sciences Python community? Come join
PyAOS:

http://pyaos.johnny-lin.com

I Ad for my book: The Nature of Environmental Stewardship,
(Pickwick Publications, 2016):

http://nature.johnny-lin.com

http://www.geosci-model-dev.net/2/1/2009/
http://www.johnny-lin.com/py_pkgs/qtcm/
http://www.atmos.ucla.edu/~csi/QTCM/qtcm.html
http://pyaos.johnny-lin.com
http://nature.johnny-lin.com

Conclusions

I In a traditional Fortran data analysis program, filenames,
variables, and functions are all static: They’re specified by
typing.

I Dictionaries enable you to:
I Dynamically associate a name with a variable or function (or

anything else), which is essentially what variable assignment
does.

I Thus, dictionaries enable you to add, remove, or change a
“variable” on the fly.

I Python data structures and first-class citizenship to nearly all
entities enable us to write dynamic data analysis (and
modeling) programs.

	What Is and Why Python?
	Prologue Data Analysis Exercise
	Review of Python Lists, Dictionaries, and Functions
	First-Class Citizenship in Python
	Applying Dynamic Structures and First-Class Citizens to Data Analysis
	An Implication for Modeling
	For More Information and an Advertisement
	Conclusions

