
Critical Strategies for Improving the Code
Quality and Cross-Disciplinary Impact of

the Computational Earth Sciences

Johnny Wei-Bing Lin
(Physics Department, North Park University)

Tyler A. Erickson
(MTRI and Michigan Technological University)

Acknowledgments: Thanks to Ricky Rood and Jeremy Bassis at the
University of Michigan for discussions.

Slides version date: February 8, 2012. Presented at the NCAR/UCAR/Boulder-area
Software Engineering Assembly conference in Boulder, CO on February 21, 2012. This
work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0
United States License.

Outline
 The current insular state of computational earth sciences and

why we should care
 Critical strategy #1: Unit testing and code review
 Critical strategy #2: Social coding
 Critical strategy #3: Open application programming interfaces

(APIs)
 Examples of cross-disciplinary fertilization possible with open

APIs
 Developing the computational earth sciences community to

encourage adoption of best practices: Code management
 Possible “first-step” roles for funding agencies and the

community.

Bottom line: Adopting these critical strategies will improve the
code quality and impact of computational atmospheric
sciences.

Insularity of the computational earth
sciences and why this is bad
 Symptom of insularity: We

use languages no one else
uses. Thus:
 Outside users cannot use

or test our code.
 Code innovations created

by others are unavailable
to us: Fewer synergies
are possible.

 Computational power and
tools have exploded outside
the HPC community: We
can't access the results of
that explosion.

Language Rank Rating

Java 1 17.913%

C 2 17.707%

C++ 3 9.072%

Language Rank Rating

Fortran 31 0.381%

Matlab 21 0.573%

IDL 51-100 N/A

(top) The 3 most popular languages. (bott) Popularity of
languages used in the computational earth sciences. Data from
the TIOBE Programming Community Index for October 2011.

Critical strategy #1: Unit testing and
code review results in better code
 Detect faults in code:

 Code reading, functional testing, or structural testing found,
on average, 50% of faults in test code in one study (Basili &
Selby 1987).

 If this is this study's fault detection rate with some testing,
think what the undetected fault rate would be without testing.

 Higher code quality:
 Structured code reading alone, in one study, yielded 38%

fewer errors per thousand lines of code (Fagan 1978).
 Minimum code quality can increase linearly with the number

of tests written (Erdogmus et al. 2005).
 Well-tested code enables code to be used as “black boxes”

and thus be more reusable.
 Well-written code matters: “... code is read much more

often than it is written.” (Van Rossum & Warsaw 2001).

Critical strategy #2: Social coding can
dramatically improve code quality
 Open source “social coding” is a community development

method that supports code improvement by lowering the barriers
to access and changing.

 Project hosting websites (e.g., GitHub) have robust tools to
enable distributed (not centrally guided):
 Forking and merging
 Code review
 Identification of code improvements
Program development becomes a very broad-based communal
effort!

 Forking a codebase becomes a good, not an evil!:
“The advantages of multiple codebases are similar to the
advantages of mutation: they can dramatically accelerate the
evolutionary process by parallelizing the development path.”
(Stephen O'Grady, 2010)

Critical strategy #3: Open APIs create
synergies that increase the impact of code
 Doing good science requires more than just a single tool

(i.e., a model) but also includes analysis, visualization, etc.
 The application of atmospheric sciences research to other

disciplines (e.g., watershed management) also requires
more than just a single tool, including tools not traditionally
associated with science (e.g., web services).

 When tools communicate well with each other, you can do
a lot more.

 Communication between programs happens through APIs.
 Well-defined APIs make your package usable to many

more users and enable unanticipated synergies.

Example of cross-disciplinary fertilization using
open APIs: Python and ACIS

 Problem: Integrating many different components of the Applied Climate
Information System.

 Solution: Do it all in Python: A single environment of shared state vs. a
crazy mix of shell scripts, compiled code, Matlab/IDL scripts, and a web
server makes for a more powerful, flexible, and maintainable system.

Image from: AMS 2011 talk by Bill Noon, Northwest Regional Climate Center, Ithaca,
NY, http://ams.confex.com/ams/91Annual/flvgateway.cgi/id/17853?recordingid=17853

Example of cross-disciplinary fertilization
using open APIs: pyKML
 pyKML is an open source Python library for easily

manipulating 3-D spatial + temporal KML documents which
provide data to virtual globe applications
(i.e., Google Earth).

 Synergies enabled by this open-API:
 As a Python package, pyKML integrates

KML manipulation with data access,
geographic/geometric processing,
analysis and calculation, web services,
etc.

 pyKML has been used to visualize
atmospheric transport modeling and
weather and climate modeling datasets.

 Even Google geo engineers now use
pyKML and have recommended it at
their own developers conference
(Google I/O).

Example of visualizing climate model output data

Example of visualizing
atmospheric transport

model (STILT)
datasets using KML

Developing our community to
encourage adoption of best practices
 Goal: Better science through eschewing insularity

and encouraging the adoption of software engineering
and open-source best practices:
 Unit testing and code review
 Social coding
 Open APIs

 Achieving this goal requires our community rethink
how it manages code:
 Code is not just written, it can be used, by yourself and

others.
 Thus, code is not just a static entity you store but a

dynamic entity you manage (or govern).

Seven issues in code management
1) Distribution: How can you make the code available to others?
2) Documentation: How do you describe the code so that others

can understand it?
3) Advertising: How do you make sure others can “find” the code?

 Discover the code exists
 Realize the code can be applied to their particular problem

4) Instruction: How do you make sure others have the skills that
are needed to use the code?

5) Evaluation: How do you learn how your code compares to
others people's code?

6) Improvement and feedback: Are their mechanisms to enable
users to take your code, use it, improve it, and return those
results to the community?

7) Sustainability: Are there (dis)incentives to make code
management more (difficult)easy to implement?

The current state of code management
 Most people think code management means distribution

and documentation. Thus:
 The “state-of-the-practice” in earth sciences code

management is releasing your code online.
 The “state-of-the-art” in earth sciences code management is

releasing your code online with a manual.
 Ignoring the other aspects of code management results in:

 Code that seldom gets used by anyone besides the original
author.

 Code that receives limited testing.
 A lot of reinventing the wheel.
 Science that is functionally irreproducible.

 But when we consider not just omissions, it's even
worse ...

Current practices work against robust
code management
 Incentive structure: Scientists are usually recognized

for discoveries, not writing great APIs, unit tests, etc.,
even if their code enables many others to make
discoveries.

 Opportunity cost: Time writing good, useful (to
others) code is time taken away from making
discoveries.

 Low community standards: Little public downside to
writing untested code.

 Funding: Agencies seldom fund few code
management practices beyond distribution and
documentation. Even open API development
components can be poorly received by proposal
reviewers.

Towards better code management
 Technological solutions:

 Easiest to implement
 GitHub
 BuzzData: A Facebook for data
 VisTrails: Workflow provenance management and

“executable papers” that have a paper's computations
embedded into the paper.

 Cultural solutions:
 More difficult to implement but ultimately more influential and

effective
 Metrics of the value of code management efforts to science

(e.g., analogous to journal impact factors and citation
studies)

 Lessons from high energy physics: Incentivizing and
recognizing co-author #63 on a large and expensive
experiment

Possible “first-step” roles for funding
agencies and the community
 Cultural incentives: Value quality coding and

code advances in addition to scientific discovery
 Financial incentives: Provide resources and

requirements to discourage insularity and
encourage best practices

Funding agencies roles
 Provide incentives for the publication of model and

analysis source code under open licenses.
 Provide incentives for proposals to include a plan for

ensuring code quality and openness. This could mean:
 A structured plan for code review.
 Source code be asked to pass some minimal suite of tests.
 Code be hosted on a publicly accessible repository even

during the project → “real-time code peer-review.”
 Support the development of open APIs:

 This can be an add-on requirement for standard science
proposals.

 Allocate some funding for pure open API development
proposals.

 ESMF is only a step towards this, since scientific computing
involves much more than coupling model components.

Community roles
 Expectations: Ask your graduate students or

researchers to implement a plan for code review, etc.
as part of their regular work.

 Dissemination: Hold seminars, discussions, and
courses on software engineering best practices and
open APIs.

 Support: Build systems (technological and social) to
grow community support for improved coding
practices:
 Training (e.g., AMS 2012 Python short course)
 Community resources (e.g., pyaos.johnny-lin.com)
 Social coding (e.g., github.com)
 Certification

Conclusions
 The time is long past where the computational

atmospheric sciences community can practice
programming the way it always has.

 Unit testing, structured code review, and social
coding can produce higher quality programs.

 Well-written and open APIs can lead to amazing
synergies with other disciplines.

 Change requires funding agencies and the
computational atmospheric sciences community
to support a “new” approach to scientific
programming and a holistic plan for code
management.

