
Object-Oriented Python Climate Models, Analysis Tools, and Undergraduate
Teaching and Research

Johnny Wei-Bing Lin and Calvin Smythe  
Physics Department, North Park University, Chicago, Ill.

Fig. 1. Screenshot of an interactive
integration of a qtcm model instance.

The upper-left window shows the code
for initializing the model instance and
running 180 days of simulation.

The lower-right window shows the run
session. The first two lines in the
window called the plotm methods to
generate the two plots. The third line
shows variable substitution for
prognostic variable u1 (doubling the
existing value), and the fourth line will
run the model for another 30 days when
executed.

The 180 day model run took a little over
a minute of wall-clock time on a 1.83
GHz Intel Core Duo with 1 GB 667 MHz
DDR2 SDRAM running Mac OS X
version 10.4.11. The horizontal grid for
the model is 5.625 × 3.75 degrees
longitude and latitude.

Why Python?
Historically, climate modeling and analysis has used compiled languages
like Fortran. The result has been brittle and inaccessible code. Wrapping
compiled models in Python helps overcome these pitfalls because of the
following features of this multi-platform and open-source language:

Interpreted and highly modular: Compiling and linking are done
automatically. Program execution is dynamic at run time.

Object-oriented: Data, metadata (“attributes”), and functions that operate
on that data (“methods”) are bound together as objects.

Very clear syntax: Python programs read like pseudo-code.

Reference and acknowledgements
Neelin, J. D. and N. Zeng, 2000: A quasi-equilibrium tropical circulation model—formulation, J. Atmos. Sci., 57
(11):1741–1766.

Thanks to David Neelin and Ning Zeng and the Climate Systems Interactions Group at UCLA for their
encouragement and help. On the Python side, thanks to Alexis Zubrow, Christian Dieterich, Rodrigo Caballero,
Michael Tobis, and Ray Pierrehumbert for steering me straight. Thanks to God for allowing the qtcm package to
run sucessfully. Early versions of some of this work was carried out at the University of Chicago Climate Systems
Center, funded by the National Science Foundation (NSF) Information Technology Research Program under grant
ATM-0121028. Any opinions, findings and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the NSF. Python climate tools

A variety of Python tools exist for both general scientific computing and
climate specific research. Packages include:

Climate Data Analysis Tools (CDAT): Produced by the Program for
Climate Model Diagnosis and Intercomparison at Lawrence Livermore
National Laboratory, CDAT provides a suite of tools for data management,
climate statistics, regridding, etc. URL: http://cdat.sf.net.

Matplotlib: 2-D plotting library (line, contour, etc.). URL: http://
matplotlib.sourceforge.net.

Scipy: A comprehensive suite of mathematical and engineering functions.
URL: http://www.scipy.org.

Interactive modeling with qtcm	

The qtcm package is a Python wrapping of the Neelin-Zeng (2000)
Quasi-equilibrium Tropical Circulation Model, a primitive equation-based
intermediate-level atmospheric model focused on simulating tropical
climate dynamics that includes baroclinic instability, a simple land-surface
model, and a CAPE-based convective parameterization.

Fig. 1 shows a screenshot of an interactive Python session running an
instance of the qtcm tropical atmosphere model. During an interactive
session you have access to all variables in the current scope.

The visualization was done interactively at runtime. The screenshot also
shows how you can change model variable values with an assignment
statement, and continue the model run by calling run_session again.

 phys = ['__qtcm.wrapcall.wmconvct',	

 '__qtcm.wrapcall.wcloud',	

 '__qtcm.wrapcall.wradsw',	

 '__qtcm.wrapcall.wradlw',	

 '__qtcm.wrapcall.wsflux']	

Fig. 2. List of physics routines to execute during
one atmospheric timestep. Changeable at runtime.

Python provides built-in methods to append, insert, and replace items at
will. For instance, to add a shallow cloud routine shallowcloud after
the existing cloud routine, type phys.insert(‘shallowcloud’,
2). All regular programming constructs (looping, conditionals,
operations, etc.) can also be used to manipulate the runlist.

Execution control using runlists
Because Python is an interpreted language, subroutine execution order and
content is not fixed during runtime. qtcm uses “runlists,” lists of string
names, to describe what subroutines are executed and in what order. Fig. 2
gives an example of this kind of list.

Simple enough for all users
Through using Python as a wrapping language, students and researchers
can use models without dealing with compiling and linking, makefiles,
environment variables, shell scripts, etc., but rather can create, analyze,
and visualize model simulations interactively. The flexibility of Python
objects enables the user to alter a model’s configuration on the fly,
permitting easier access to more regions of the model’s solution space.

For more information: Please contact Johnny Lin at:
 Email: jlin@northpark.edu
 Personal home page: http://www.johnny-lin.com
 Package qtcm home page: http://www.johnny-lin.com/py_pkgs/qtcm

