A simple object-oriented framework for making sea-ice models “plug-and-play”

Johnny Wei-Bing Lin

Computation Institute, University of Chicago

Introduction

Historically, sea-ice models have been developed incrementally and in compiled
languages like Fortran. This has limited their modularity and robustness. The code is
difficult to maintain and keep from becoming brittle.

Fig. 1 shows a snippet of Fortran code from an ice model. This snippet calls a subroutine
that calculates the net energy budget. The argument list is long and unwieldy, the
variables contain no metadata (and thus undetectable errors can easily propagate), and the
grid is rigid, making it hard to couple the model to other climate models or components.
Compiled languages such as Fortran are also not interactive.

Modern computer languages have structures that overcome many of these difficulties.
Here we implement the Semtner (1976) “0-" and “n-layer” thermodynamic models in the
open-source language Python in an object-oriented framework that results in a sea-ice
model that is more “plug-and-play” than existing models. Because Python has a robust
toolkit to interface with compiled code, the framework described here can be extended in
a straightforward way to “wrap” existing Fortran sea-ice models (such as CSIM).

Fig. 2. Initializing the
(a) “0-layer” model
and the (b) “n-layer”
model.

(a) init_state = initialize run()
set = StateSet(init state, delt=8.0%*3600.0)
model = simpleIce(set)

(b) init state = initialize run()
set = StateSet(init_state, delt=8.0%*3600.0)
model = Semtner(set)

call ice_budget (sw_flux(i,3),lw_flux(i,3),
sh_flux(i,3),lh_flux(i,j),ocean_flux(i,3),
ocean_temp(i,j),ice_area(i,j),ice_thick(i,]),
ice_temp(i,j),lead_temp(i,j),snow_thick(i,3),
snow_fall(i,j),snow_temp(i,j),sfc_temp(i,j),
sh_lead flux(i,j),lh_lead flux(i,j),
u_air(i,j),v_air(i,3),ctr_ice(i,3),
iceoc_temp(i,]),dhtop(i,]),dhbot(i,j))

Y

Fig. 1. A subroutine call from the sea-ice model in a regional climate model for the
Arctic. Most climate scientists would consider the complexity of this code as
nothing unusual.

Modular sea-ice models

Older procedural languages usually lack tools to manage the variable namespace. One
result is that subroutine argument lists are “hard-wired” and lengthy. Modern languages
avoid this through dictionaries and the creation of specialty data structures and classes to
ensure the right variables are available and used when needed.

Fig. 2a shows code used to initialize the “0-layer” model (for clarity, two lines used to
initialize forcing are not shown). All of the parameters, boundary conditions, and
variables, along with their metadata, are stored in the init_state object When the
model is initialized (last line), only one argument is then needed. Note that the
init_state object is not a Fortran common block. Because it also contains variable
metadata, the object is verifiably self-consistent.

Fig. 2b shows initialization code for the “n-layer” Semtner model. The code is identical
to 2a, except for the last line. What this illustrates is not that the initial conditions are the
same, since they cannot be: the ice layer temperature variable in the initialize run

function, for instance, has only one “layer” for the “0-layer” model but n layers for the
“n-layer” model. What it does illustrate is that by binding variable metadata to the
variable object itself, needed information (e.g. the grid) automatically propagates
upwards to the model creation level. The object management tools also automatically
ensure that only needed variables are used by the model. Thus, it is trivial to swap
different models in and out.

Interactive modeling

Fig. 3 shows a screenshot of an interactive Python session running the “0-layer” Semtner
(1976) model in a single-column mode. Because Python is an interpreted language, there
is no separate compilation cycle, and during an interactive session you have access to all
variables in the current scope. The upper left-hand window shows some source code and
the lower right-hand window shows the results of a little less than two years of
integration.

The visualization was done interactively at run-time. A user can also change parameter
values at run-time and continue integration using those new values. This enables climate
scientists to use the sea-ice models interactively.

Grid independent models

Because object-oriented langauges allow you to carry within an object all the metadata
needed to operate on the variable data also in that object, programs written in the object-
oriented framework can readily be made grid independent.

Fig. 4 shows the code used to calculate change in snow thickness due to melting in the
“n-layer” model. The first three terms on the right-hand side are masks ensuring only
places with ice and snow and are above or equal to the melting point can have melting
snow. The magnitude of the change is the timestep times the net heat flux out divided by
the heat of fusion of snow.

Fig. 4. Change in
hs_tend += hI_ne0 * is_melt * is_snow \ snow thickness due

* self.delt * (FA - Fs) / stO['gs'] to melting in the “n-
layer” model.

What is unique is that this code is the same regardless of domain type, i.e. whether the
domain is a single column, latitude bands, a latitude-longitude grid, etc.. It also does not
matter whether the spatial discretization is regular (e.g. finite-difference) or irregular (e.g.
a custom finite-element mesh). Again, since all grid information is attached to variable
objects and operated on by attached methods, you can write code to do calculations
without reference to unneeded domain information. In contrast, Fortran array size and
dimensions are fixed. Changing from a finite-difference to finite-element grid would
likely require changing the code: array declarations, array element indexing, etc.

Men Dec 13, 19:34

— = X| 11 Viuaizatior-an= Contio Svazam — C X

Flo kdis vew le-minal 1abs Ho

15 = F1e.dC Aarrav(] 2L ol + 221

winrk)
i)

s conta-svasim - C X|

Conclusions

Modem object-oriented computer languages enable us to create a sea-ice modeling
framework that is modular, interactive, and grid independent. Such a framework can also
be used to modularize other climate model components. Utilizing frameworks like these
promises to enable climate scientists to focus less on programming and more on using the
models for hypothesis testing and physical insight.

B gl ey @ Terminl |t - vis-al e)2 - Visuaical ()3, - vis. ol <o |ESre0a10 PPN | iauli1 Caina i Werlspece s

Fig. 3. Screenshot of an interactive integration of the “0-layer” model.

Reference and acknowledgements

Semtner, A J. (1976): A model for the growth of sea of dimate J Piys Cceanog. 6,
379-389

This worls benefited from conversations with Todd Abetter, Rodrigo Caballero, Christian Dieterich, Marika Holland, Rob Jacob, Ray
Pierrehumbert, Mike Steder, and Michael Tobis Inthe final crazy weekes before this conference, G od answered prayers that [would have
results to present. This research was partially supported by National Science Foundation grant ATM-0121028. This poster solely
represents the opinions of the author

For further information

Please contact Johnny Lin at jlin@geosci uchicago edu. URLs:
http://www johnny-lin.com/presn.html
http://climate.uchicago.edu/

