Jounny WEI-BING LIN

A Hands-On Introduction to Using
Python in the Atmospheric and
Oceanic Sciences

HTTP://WWW.JOHNNY-LIN.COM/PYINTRO

2012

© 2012 Johnny Wei-Bing Lin.
Some rights reserved. Printed version: ISBN 978-1-300-07616-2. PDF ver-
sions: No ISBNs are assigned.

This work is licensed under the Creative Commons Attribution-Noncom-
mercial-Share Alike 3.0 United States License (CC BY-NC-SA). To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
us or send a letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA.

Who would not want to pay money for this book?: if you do not need
a black-and-white paper copy of the book, a color PDF copy with functional
hyperlinks, have limited funds, or are interested in such a small portion of
the book that it makes no sense to buy the whole thing. The book’s web site
(http://www.johnny-lin.com/pyintro) has available, for free, PDFs of every
chapter as separate files.

Who would want to pay money for this book?: if you want a black-
and-white paper copy of the book, a color PDF copy with functional hy-
perlinks, or you want to help support the author financially. You can buy
a black-and-white paper copy of the book at http://www.johnny-lin.com/
pyintro/buypaper.shtml and a hyperlink-enabled color PDF copy of the book
at http://www.johnny-lin.com/pyintro/buypdf.shtml.

A special appeal to instructors: Instruction at for-profit institutions, as
a commercial use, is not covered under the terms of the CC BY-NC-SA, and
so instructors at those institutions should not make copies of the book for
students beyond copying permitted under Fair Use. Instruction at not-for-
profit institutions is not a commercial use, so instructors may legally make
copies of this book for the students in their classes, under the terms of the CC
BY-NC-SA, so long as no profit is made through the copy and sale (or Fair
Use is not exceeded). However, most instruction at not-for-profit institutions
still involves payment of tuition: lots of people are getting paid for their
contributions. Please consider also paying the author of this book something
for his contribution.

Regardless of whether or not you paid money for your copy of the book,
you are free to use any and all parts of the book under the terms of the CC
BY-NC-SA.

Chapter 6

A “Real” AOS Project: Putting
Together a Basic Data Analysis
Routine

At this point, we’ve covered enough of Python for you to do basically any
atmospheric or oceanic sciences calculation you would normally use a data
analysis language like IDL or Matlab for (excepting visualization, which
we’ll cover in Ch. 9). So let’s put what we’ve learned to the test and do a
“real” AOS data analysis project.

In Section 6.1, I present your mission (should you accept it @). In Sec-
tions 6.2-6.5, I give four different ways of solving the problem. Why four
solutions? I want to use this real-world-like project to demonstrate how the
modern features of Python enable you to write much more powerful and
robust programs than are possible in traditional compiled and data analy-
sis languages; you can write a Fortran-like program in Python, but if you
do, you’ll miss features of Python that can help make your life as a scien-
tist much easier. Finally, we finish with some exercises where we use these
modern methods to extend our data analysis program.

6.1 The assignment

Let’s say you have three data files named data0001.txt, data0002.txt, and
data0003.txt. Each data file contains a single column of data of differing
lengths (on the order of thousands of points). The data files have no headers.
Write a program that:

e Reads in the data from each file into its own NumPy array.

89

6.2. SOLUTION ONE: FORTRAN-LIKE STRUCTURE

e Calculates the mean, median, and standard deviation of the values in
each data file, saving the values to variables for possible later use.

While you can do this assignment without recourse to a real dataset,
there are three data files so structured in the course_files/datasets directory.
The data is random (Gaussian distributed), with the first dataset data0001.txt
having a mean and standard deviation of 1, the second data0002.txt having
a mean and standard deviation of 2, etc., so that you can see whether you’re
getting the right result. Specifically, NumPy will calculate the mean and
standard deviation as:

data®@001.txt: 0.962398498535 1.00287723892
data®002.txt: 2.02296936035 1.99446291623
data®003.txt: 3.08059179687 2.99082810178

Hints: The NumPy function for calculating the mean is mean, the median
is median, and the standard deviation is std.

GASPARD-GUSTAVE, 1S
THE BATH READY YET?Z!?
THE KIDS NEED TO WASH

arRGH!LL
STILL TOO

80-g uosuyor g ur

Licensed under a Creative Commons BY-NC-SA 3.0 license

Bath Time at the Coriolis Household

6.2 Solution One: Fortran-like structure

In this solution, I’ve put all the file open, closing, read, and conversion into
a function, so you don’t have to type open, etc., three times. Then, I make
use of NumPy’s statistical functions to analyze the data and assign the results

90

6.2. SOLUTION ONE: FORTRAN-LIKE STRUCTURE

to variables. The way it’s written, however, looks very Fortran-esque, with
variables initialized and/or created explicitly.

i |import numpy as N

3 |def readdata(filename):

4 fileobj = open(filename, ’'r’)

5 outputstr = fileobj.readlines()

6 fileobj.close()

7 outputarray = N.zeros(len(outputstr), dtype="f’)
8 for i in xrange(len(outputstr)):

9 outputarray[i] = float(outputstr[i])
10 return outputarray

11

2 |datal = readdata(’data®001.txt’)

3 |data2 = readdata(’data®002.txt’)

4+ |data3 = readdata(’data®003.txt’)

15

s |meanl = N.mean(datal)

7 |medianl = N.median(datal)

s |stddevl = N.std(datal)

» |mean2 = N.mean(data2)

21 |median2 N.median(data2)
» |stddev2 N.std(data2)

23
» |mean3 = N.mean(data3)

»s |median3 N.median(data3)
% |stddev3 = N.std(data3)

The program above works fine, but we haven’t really taken much advan-
tage of anything unique to Python. How might we change that? For instance,
in readdata, instead of using a loop to go through each element and con-
vert it to floating point, we could use array syntax and the astype method
of NumPy array objects. The code to replace lines 7-9 would be:

outputarray = N.array(outputstr)
outputarray = outputarray.astype(’f’)

This doesn’t really change much, however. The program is still written so
that anytime you specify a variable, whether a filename or data variable, or

91

Example of
using astype
for array type
conversion.

6.3. SOLUTION TWO: STORE RESULTS IN ARRAYS

an analysis function, you type it in. This is fine if you have only three files,
but what if you have a thousand? Very quickly, this kind of programming
becomes not-very-fun.

6.3 Solution Two: Store results in arrays

One approach seasoned Fortran programmers will take to making this code
better is to put the results (mean, median, and standard deviation) into arrays
and have the element’s position in the array correspond to data0001.txt, etc.
Then, you can use a for loop to go through each file, read in the data, and
make the calculations. This means you don’t have to type in the names of
every mean, median, etc. variable to do the assignment. And, since we also
have Python’s powerful string type to create the filenames, this approach is
even easier to do in Python than Fortran. The solution, then, is:

import numpy as N
num_files = 3

mean = N.zeros(num_files)
median = N.zeros(num_files)
stddev = N.zeros(num_files)

for i in xrange(num_files):
filename = ’data’ + (’000’+str(i+1))[-4:]1 + ’.txt’
data = readdata(filename)

=T T - ¥ N O N

10 mean[i] = N.mean(data)
1 median[i] = N.median(data)
12 stddev[i] = N.std(data)

(I 1eft out the definition of readdata, which is the same as in Solution One.
This is also true for all the other solutions to come.)

This code is slightly more compact but scales up to any num_files num-
ber of files. But I'm still bothered by two things. First, what if the filenames
aren’t numbered? How then do you relate the element position of the mean,
etc. arrays to the file the calculated quantity is based on? Variable names
(e.g., meanl) do convey information and connect labels to values; by putting
my results into generic arrays, I lose that information. Second, why should I
predeclare the size of mean, etc.? If Python is dynamic, shouldn’t I be able
to arbitrarily change the size of mean, etc. on the fly as the code executes?

92

6.4. SOLUTION THREE: STORE RESULTS IN DICTIONARIES

6.4 Solution Three: Store results in dictionaries

Before looking at this solution, we first need to ask how might dictionaries
be useful for our problem. We previously said variable names connect labels
to values, meaning that a string (the variable name) is associated with a value
(scalar, array, etc.). In Python, there is a special construct that can associate
a string with a value: a dictionary. From that perspective, setting a value to a
key that is the variable name (or something similar), as you do in dictionaries,
is effectively the same as setting a variable with an equal sign. However,
dictionaries allow you to do this dynamically (i.e., you don’t have to type
in “variable equals value”) and will accommodate any string, not just those
numbered numerically.

Here, then, is a solution that uses dictionaries to hold the statistical re-
sults. The keys for the dictionary entries are the filenames:

1 |import numpy as N

» |mean = {} #- Initialize as empty dictionaries
3 |median = {}

4+ |stddev = {}

s |list_of_files = [’data®001.txt’, ’data®0®02.txt’,
6 ’data®003.txt’]

s |for ifile in list_of_files:

9 data = readdata(ifile)

10 mean[ifile] = N.mean(data)

1 median[ifile] = N.median(data)
12 stddev[ifile] = N.std(data)

So, in this solution, instead of creating the filename each iteration of
the loop, I create a list of files and iterate over that. Here, it’s hard-coded
in, but this suggests if we could access a directory listing of data files, we
could generate such a list automatically. I can, in fact, do this with the glob
function of the glob module:!

import glob
list_of_files = glob.glob("data*.txt")

You can sort 1ist_of_files using list methods or some other sorting func-
tion. (See the discussion on p. 111 which briefly introduces the built-in
sorted function.)

ISee http://docs.python.org/library/glob.html for details on the module (accessed August
16, 2012).

93

Variable
names
connect labels
to values.

Dictionaries
can
dynamically
associate
strings with
values.

Using glob
to get a
directory file
listing.

Example of
namespace
protection in
Python.

Dictionaries
can hold any
object, even
functions and
other
dictionaries.

6.5. SOLUTION FOUR: STORE RESULTS AND FUNCTIONS IN
DICTIONARIES

Another feature of this solution is that statistical values are now refer-
enced intelligently. That is to say, if you want to access, say, the mean of
data000] .txt, you type in mean[’data®001.txt’]. Thus, we’'ve fixed the
issue we had in Solution Two, where the element address of the variable
mean had limited meaning if the dataset filenames were unnumbered. Cool!

An aside: Again, you don’t need the continuation backslash if you’re
continuing elements of a list (or similar entities) in the next line. Also, be-
cause of Python’s namespace protections (see p. 41 for more details), we can
have a variable named mean in our program that will not conflict with the
NumPy function mean, because that function is referred to as N.mean.

6.5 Solution Four: Store results and functions in
dictionaries

The last solution was pretty good, but here’s one more twist: What if [wanted
to calculate more than just the mean, median, and standard deviation? What
if I wanted to calculate 10 metrics? 30? 100? Can I make my program
flexible in that way?

The answer is, yes! And here too, Python dictionaries save the day: The
key:value pairs enable you to put anything in as the value, even functions and
other dictionaries. So, we’ll refactor our solution to store the function objects
themselves in a dictionary of functions, linked to the string keys 'mean’,
'median’, and ’stddev’. We will also make a results dictionary that
will hold the dictionaries of the mean, median, and standard deviation results.
That is, results will be a dictionary of dictionaries. This solution is:

1 |import numpy as N
» |import glob

4 |metrics = {’mean’:N.mean, ’'median’:N.median,
5 "stddev’ :N.std}
¢ |list_of_files = glob.glob("data*.txt")

s |results = {} #- Initialize results
o |for imetric in metrics.keys(): # dictionary for each
10 results[imetric] = {} # statistical metric

2 |for ifile in list_of_files:

13 data = readdata(ifile)
14 for imetric in metrics.keys():
15 results[imetric][ifile] = metrics[imetric] (data)

94

6.6. EXERCISES ON USING DICTIONARIES AND EXTENDING
YOUR BASIC DATA ANALYSIS ROUTINE

This program is now generally written to calculate mean, median, and
standard deviation for as many files as there are in the working directory that
match "data*.txt" and can be extended to calculate as many statistical
metrics as desired. If you want to access some other files, just change the
search pattern in glob. If you want to add another statistical metric, just
add another entry in the metrics dictionary. So, you just change two lines:
nothing else in the program needs to change. This is what I mean when 1|
say that Python enables you to write code that is more concise, flexible, and
robust than in traditional languages. By my lights, this isn’t just cool, but
way cool ©.

6.6 Exercises on using dictionaries and extend-
ing your basic data analysis routine

> Exercise 18 (Dynamically filling a dictionary):
Assume you’re given the following list of files:

list_of_files = [’data®@01.txt’, ’'data®0082.txt’,
"data®003.txt’]

e Create a dictionary £ilenum where the keys are the filenames and the
value is the file number (i.e., data000].txt has a file number of 1) as an
integer.

e Make your code fill the dictionary automatically, assuming that you
have a list 1ist of files.

e Hints: To convert a string to an integer, use the int function on the
string, and the list and array sub-range slicing syntax also works on
strings.

Solution and discussion: Here’s my program to fill £ilenum:

filenum = {}
list_of_files = [’data®@01.txt’, ’data®002.txt’,
’data®003.txt’]
for ifile in list_of_files:
filenum[ifile] = int(ifile[4:8])

95

6.7. SUMMARY

> Exercise 19 (Extend your data analysis routine to calculate skew
and kurtosis):

For the basic data analysis routine assignment given in this chapter, ex-
tend the last solution so that it also calculates the skew and kurtosis of each
file’s data. (Hint: NumPy has functions skew and kurtosis that do the
calculations.)

Solution and discussion: Here’s my extended program:

1 |import numpy as N
> |import glob

4 |metrics = {’mean’:N.mean, ’'median’:N.median,
5 ’stddev’:N.std, ’skew’:N.skew,

6 ’kurtosis’:N.kurtosis}

7 |list_of_files = glob.glob("data*.txt")

9 |results = {} #- Initialize results
1o | for imetric in metrics.keys(): # dictionary for each
1 results[imetric] = {} # statistical metric

13 |for ifile in list_of_files:

14 data = readdata(ifile)
15 for imetric in metrics.keys():
16 results[imetric][ifile] = metrics[imetric] (data)

That was easy! (Again, I left out the definition of readdata from this code,
because it’s just the same as in Solution One.)

6.7 Summary

In a traditional Fortran data analysis program, filenames, variables, and func-
tions are all static. That is to say, they’re specified by typing. Python data
structures enable us to write dynamic programs, because variables are dy-
namically typed. In particular, Python dictionaries enable you to dynami-
cally associate a name with a variable or function (or anything else), which
is essentially what variable assignment does. Thus, dictionaries enable you
to add, remove, or change a “variable” on the fly. The results are programs
that are more concise and flexible. And fewer lines of code means fewer
places for bugs to hide. Way cool!

96

