
JohnnyWei-Bing Lin

A Hands-On Introduction to Using
Python in the Atmospheric and

Oceanic Sciences

http://www.johnny-lin.com/pyintro

2012

c© 2012 Johnny Wei-Bing Lin.
Some rights reserved. Printed version: ISBN 978-1-300-07616-2. PDF ver-
sions: No ISBNs are assigned.

This work is licensed under the Creative Commons Attribution-Noncom-
mercial-Share Alike 3.0 United States License (CC BY-NC-SA). To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

us or send a letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA.

Who would not want to pay money for this book?: if you do not need
a black-and-white paper copy of the book, a color PDF copy with functional
hyperlinks, have limited funds, or are interested in such a small portion of
the book that it makes no sense to buy the whole thing. The book’s web site
(http://www.johnny-lin.com/pyintro) has available, for free, PDFs of every
chapter as separate files.

Who would want to pay money for this book?: if you want a black-
and-white paper copy of the book, a color PDF copy with functional hy-
perlinks, or you want to help support the author financially. You can buy
a black-and-white paper copy of the book at http://www.johnny-lin.com/

pyintro/buypaper.shtml and a hyperlink-enabled color PDF copy of the book
at http://www.johnny-lin.com/pyintro/buypdf.shtml.

A special appeal to instructors: Instruction at for-profit institutions, as
a commercial use, is not covered under the terms of the CC BY-NC-SA, and
so instructors at those institutions should not make copies of the book for
students beyond copying permitted under Fair Use. Instruction at not-for-
profit institutions is not a commercial use, so instructors may legally make
copies of this book for the students in their classes, under the terms of the CC
BY-NC-SA, so long as no profit is made through the copy and sale (or Fair
Use is not exceeded). However, most instruction at not-for-profit institutions
still involves payment of tuition: lots of people are getting paid for their
contributions. Please consider also paying the author of this book something
for his contribution.

Regardless of whether or not you paid money for your copy of the book,
you are free to use any and all parts of the book under the terms of the CC
BY-NC-SA.

Chapter 4

Array Operations

4.1 What is an array and the NumPy package

In Ch. 3, we were introduced to lists, which look a lot like Fortran arrays,
except lists can hold values of any type. The computational overhead to
support that flexibility, however, is non-trivial, and so lists are not practical
to use for most scientific computing problems: lists are too slow. To solve
this problem, Python has a package called NumPy1 which defines an array

NumPy
arrays are like
lists except all
elements are
the same
type.

data type that in many ways is like the array data type in Fortran, IDL, etc.
An array is like a list except: All elements are of the same type, so opera-

tions with arrays are much faster; multi-dimensional arrays are more clearly
supported; and array operations are supported. To utilize NumPy’s functions
and attributes, you import the package numpy. Because NumPy functions are
often used in scientific computing, you usually import NumPy as an alias,
e.g., import numpy as N, to save yourself some typing (see p. 41 for more

Importing
NumPy.about importing as an alias). Note that in this chapter and the rest of the

book, if you see the alias N in code without import numpy as N explic-
itly state, you can assume that N was defined by such an import statement
somewhere earlier in the code.

4.2 Creating arrays

The most basic way of creating an array is to take an existing list and convert
it into an array using the array function in NumPy. Here is a basic example:

1There are other array packages for Python, but the community has now converged on
NumPy.

47

4.2. CREATING ARRAYS

Example 24 (Using the array function on a list):
Assume you have the following list:

mylist = N.array([[2, 3, -5],[21, -2, 1]])

then you can create an array a with:

import numpy as N

a = N.array(mylist)

The array function will match the array type to the contents of the list. Note
Creating

arrays using
array.

that the elements of mylist have to be convertible to the same type. Thus,
if the list elements are all numbers (floating point or integer), the array
function will work fine. Otherwise, things could get dicey.

Sometimes you will want to make sure your NumPy array elements are
Making

arrays of a
given type.

of a specific type. To force a certain numerical type for the array, set the
dtype keyword to a type code:

Example 25 (Using the dtype keyword):
Assume you have a list mylist already defined. To make an array a from

that list that is double-precision floating point, you’d type:

import numpy as N

a = N.array(mylist, dtype=’d’)

where the string ’d’ is the typecode for double-precision floating point.
The dtype

keyword and
common

array
typecodes.

Some common typecodes (which are all strings) include:

• ’d’: Double precision floating

• ’f’: Single precision floating

• ’i’: Short integer

• ’l’: Long integer

Often you will want to create an array of a given size and shape, but
you will not know in advance what the element values will be. To create an

48

4.2. CREATING ARRAYS

array of a given shape filled with zeros, use the zeros function, which takes
the shape of the array (a tuple) as the single positional input argument (with
dtype being optional, if you want to specify it):

Example 26 (Using the zeros function):
Let’s make an array of zeros of shape (3,2), i.e., three rows and two

Using zeros
to create a
zero-filled
array of a
given shape.

columns in shape. Type in:

import numpy as N

a = N.zeros((3,2), dtype=’d’)

Print out the array you made by typing in print a. Did you get what you
expected?

Solution and discussion: You should have gotten:

>>> print a

[[0. 0.]

[0. 0.]

[0. 0.]]

Note that you don’t have to type import numpy as N prior to every
You only
have to
import
NumPy once
in your
module file.

use of a function from NumPy, as long as earlier in your source code file
you have done that import. In the examples in this chapter, I will periodi-
cally include this line to remind you that N is now an alias for the imported
NumPy module. However, in your own code file, if you already have the
import numpy as N statement near the beginning of your file, you do not
have to type it in again as per the example. Likewise, if I do not tell you to
type in the import numpy as N statement, and I ask you to use a NumPy
function, I’m assuming you already have that statement earlier in your code
file.

Also note that while the input shape into zeros is a tuple, which all array
shapes are, if you type in a list, the function call will still work.

Another array you will commonly create is the array that corresponds to
The arange
function.the output of range, that is, an array that starts at 0 and increments upwards

by 1. NumPy provides the arange function for this purpose. The syntax is

49

4.3. ARRAY INDEXING

the same as range, but it optionally accepts the dtype keyword parameter
if you want to select a specific type for your array elements:

Example 27 (Using the arange function):
Let’s make an array of 10 elements, starting from 0, going to 9, and

incrementing by 1. Type in:

a = N.arange(10)

Print out the array you made by typing in print a. Did you get what you
expected?

Solution and discussion: You should have gotten:

>>> print a

[0 1 2 3 4 5 6 7 8 9]

Note that because the argument of arange is an integer, the resulting
Be careful

that arange
gives you the

array type
you want.

array has integer elements. If, instead, you had typed in arange(10.0),
the elements in the resulting array would have been floating point. You can
accomplish the same effect by using the dtype keyword input parameter, of
course, but I mention this because sometimes it can be a gotcha: you intend
an integer array but accidentally pass in a floating point value for the number
of elements in the array, or vice versa.

4.3 Array indexing
Like lists, element addresses start with zero, so the first element of a 1-D

Array indices
start with 0. array a is a[0], the second is a[1], etc. Like lists, you can also reference

elements starting from the end, e.g., element a[-1] is the last element in a
1-D array a.

Array slicing follows rules very similar to list slicing:
Array slicing

rules. • Element addresses in a range are separated by a colon.

• The lower limit is inclusive, and the upper limit is exclusive.

• If one of the limits is left out, the range is extended to the end of the
range (e.g., if the lower limit is left out, the range extends to the very
beginning of the array).

50

4.3. ARRAY INDEXING

• Thus, to specify all elements, use a colon by itself.

Here’s an example:

Example 28 (Array indexing and slicing):
Type the following in a Python interpreter:

a = N.array([2, 3.2, 5.5, -6.4, -2.2, 2.4])

What does a[1] equal? a[1:4]? a[2:]? Try to answer these first without
using the interpreter. Confirm your answer by using print.

Solution and discussion: You should have gotten:

>>> print a[1]

3.2

>>> print a[1:4]

[3.2 5.5 -6.4]

>>> print a[2:]

[5.5 -6.4 -2.2 2.4]

For multi-dimensional arrays, indexing between different dimensions is
Multi-
dimensional
array
indexing and
slicing.

separated by commas. Note that the fastest varying dimension is always the
last index, the next fastest varying dimension is the next to last index, and so
forth (this follows C convention).2 Thus, a 2-D array is indexed [row, col].
Slicing rules also work as applied for each dimension (e.g., a colon selects
all elements in that dimension). Here’s an example:

Example 29 (Multidimensional array indexing and slicing):
Consider the following typed into a Python interpreter:

import numpy as N

a = N.array([[2, 3.2, 5.5, -6.4, -2.2, 2.4],

[1, 22, 4, 0.1, 5.3, -9],

[3, 1, 2.1, 21, 1.1, -2]])

2See http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html and the definition
of “row-major” in http://docs.scipy.org/doc/numpy/glossary.html (both accessed August 9,
2012).

51

4.4. EXERCISES IN CREATING AND INDEXING ARRAYS

What is a[1,2] equal to? a[:,3]? a[1,:]? a[1,1:4]?

Solution and discussion: You should have obtained:

>>> print a[1,2]

4.0

>>> print a[:,3]

[-6.4 0.1 21.]

>>> print a[1,:]

[1. 22. 4. 0.1 5.3 -9.]

>>> print a[1,1:4]

[22. 4. 0.1]

Note that when I typed in the array I did not use the line continuation
character at the end of each line because I was entering in a list, and by start-
ing another line after I typed in a comma, Python automatically understood
that I had not finished entering the list and continued reading the line for me.

4.4 Exercises in creating and indexing arrays

� Exercise 12 (Creating an array of zeros):
What is the code to create a 4 row, 5 column array of single-precision

floating point zeros and assign it to the variable a?

Solution and discussion: The zeros function does the trick. Note that
the first argument in the solution is a tuple that gives the shape of the output
array, so the first argument needs the extra set of parentheses that says the
sequence is a tuple:

a = N.zeros((4,5), dtype=’f’)

� Exercise 13 (Using a multidimensional array):
Consider the example array from Example 29, here repeated:

import numpy as N

a = N.array([[2, 3.2, 5.5, -6.4, -2.2, 2.4],

[1, 22, 4, 0.1, 5.3, -9],

[3, 1, 2.1, 21, 1.1, -2]])

52

4.5. ARRAY INQUIRY

1. What is a[:,3]?

2. What is a[1:4,0:2]? (Why are there no errors from this specifica-
tion?)

3. What will b = a[1:,2] do? What will b be? Reason out first what
will happen, then try it to see. If you were wrong, why were you
wrong?

Solution and discussion: My answers:

1. a[:,3] is [-6.4, 0.1, 21].

2. a[1:4,0:2]? selects the last two rows and first three columns as a
subarray. There are no errors because while there is no “threeth” row,
the row slicing works until it’s out of rows.

3. b is the subarray consisting of the last two rows and the third column.
The code assigns that subarray to the variable b.

4.5 Array inquiry
Some information about arrays comes through functions that act on arrays;
other information comes through attributes attached to the array object. (Re-
member that basically everything in Python is an object, including arrays. In
Section 7.4 we’ll be talking more about array attributes.) Let’s look at some
array inquiry examples:

Example 30 (Array inquiry):
Import NumPy as the alias N and create a 2-D array a. Below are some

Finding the
shape, rank,
size, and type
of an array.

array inquiry tasks and the Python code to conduct these tasks. Try these
commands out in your interpreter and see if you get what you expect.

• Return the shape of the array: N.shape(a)

• Return the rank of the array: N.rank(a)

• Return the number of elements in the array: N.size(a)

• Typecode of the array: a.dtype.char

53

4.6. ARRAY MANIPULATION

Solution and discussion: Here are some results using the example array
from Example 29:

>>> print N.shape(a)

(3, 6)

>>> print N.rank(a)

2

>>> print N.size(a)

18

>>> print a.dtype.char

d

Note that you should not use len for returning the number of elements
in an array. Also, the size function returns the total number of elements in
an array. Finally, a.dtype.char is an example of an array attribute; notice
there are no parentheses at the end of the specification because an attribute

Use size, not
len, for

arrays.

variable is a piece of data, not a function that you call.

The neat thing about array inquiry functions (and attributes) is that you
Array inquiry

enables you
to write

flexible code.

can write code to operate on an array in general instead of a specific array
of given size, shape, etc. This allows you to write code that can be used on
arrays of all types, with the exact array determined at run time.

4.6 Array manipulation
In addition to finding things about an array, NumPy includes many functions
to manipulate arrays. Some, like transpose, come from linear algebra, but
NumPy also includes a variety of array manipulation functions that enable
you to massage arrays into the form you need to do the calculations you
want. Here are a few examples:

Example 31 (Array manipulation):
Import NumPy as the alias N and create one 6-element 1-D array a, one

8-element 1-D array b, and one 2-D array c (of any size and shape). Below
Reshaping,

transposing,
and other

array
manipulation

functions.

are some array manipulation tasks and the Python code to conduct those
tasks. Try these commands out in your interpreter and see if you get what
you expect.

• Reshape the array and return the result, e.g.:

54

4.6. ARRAY MANIPULATION

N.reshape(a,(2,3))

• Transpose the array and return the result:

N.transpose(c)

(Note that I’m asking you to use transpose on the 2-D array; the
transpose of a 1-D array is just the 1-D array.)

• Flatten the array into a 1-D array and return the result:

N.ravel(a)

• Concatenate arrays and return the result:

N.concatenate((a,b))

Note that the function concatenate has one positional argument (not
two, as the above may seem to suggest). That one argument is a tu-
ple of the arrays to be concatenated. This is why the above code has
“double” parenthesis.

• Repeat array elements and return the result, e.g.:

N.repeat(a,3)

• Convert array a to another type, e.g.:
Converting an
array to
another type.

d = a.astype(’f’)

The argument of astype is the typecode for d. This is an example
of an object method; we’ll explain array object methods more in Sec-
tion 7.4.

Solution and discussion: Here’s my solution for arrays a and b, where
a = N.arange(6) and b = N.arange(8), and the 2-D array from Exam-
ple 29 is now set to the variable c:

55

4.6. ARRAY MANIPULATION

>>> print N.reshape(a,(2,3))

[[0 1 2]

[3 4 5]]

>>> print N.transpose(c)

[[2. 1. 3.]

[3.2 22. 1.]

[5.5 4. 2.1]

[-6.4 0.1 21.]

[-2.2 5.3 1.1]

[2.4 -9. -2.]]

>>> print N.ravel(a)

[0 1 2 3 4 5]

>>> print N.concatenate((a,b))

[0 1 2 3 4 5 0 1 2 3 4 5 6 7]

>>> print N.repeat(a,3)

[0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5]

>>> d = a.astype(’f’)

>>> print d

[0. 1. 2. 3. 4. 5.]

You’ll want to consult a NumPy reference (see Section 10.3) to get a full
list of the array manipulation functions available, but here’s one more snazzy
function I wanted to mention. In the atmospheric and oceanic sciences, we
often find ourselves using 2-D regularly gridded slices of data where the x-
and y-locations of each array element is given by the corresponding elements
of the x and y vectors. Wouldn’t it be nice to get a 2-D array whose elements
are the x-values for each column and a 2-D array whose elements are the
y-values for each row? The meshgrid function does just that:

The
meshgrid

function. Example 32 (The meshgrid function):
Consider the following code that creates two vectors, lon and lat, that

hold longitude and latitude values (in degrees), respectively, and then assigns
the result of N.meshgrid(lon,lat) to a variable a:

import numpy as N

lon = N.array([0, 45, 90, 135, 180, 225, 270, 315, 360])

lat = N.array([-90, -45, 0, 45, 90])

a = N.meshgrid(lon,lat)

56

4.6. ARRAY MANIPULATION

What type is a? What is a[0]? a[1]?

Solution and discussion: The variable a is a tuple of two elements. The
first element of a, i.e., a[0], is a 2-D array:

>>> print a[0]

[[0 45 90 135 180 225 270 315 360]

[0 45 90 135 180 225 270 315 360]

[0 45 90 135 180 225 270 315 360]

[0 45 90 135 180 225 270 315 360]

[0 45 90 135 180 225 270 315 360]]

and the second element of the tuple a, i.e., a[1] is also a 2-D array:

>>> print a[1]

[[-90 -90 -90 -90 -90 -90 -90 -90 -90]

[-45 -45 -45 -45 -45 -45 -45 -45 -45]

[0 0 0 0 0 0 0 0 0]

[45 45 45 45 45 45 45 45 45]

[90 90 90 90 90 90 90 90 90]]

The columns of a[0] are the longitude values at each location of the
2-D grid whose longitude locations are defined by lon and whose latitude
locations are defined by lat. The rows of a[1] are the latitude values at
each location of the same 2-D grid (i.e., that grid whose longitude locations
are defined by lon and whose latitude locations are defined by lat). Which
is what we wanted ,.

An aside: Note that the first row (i.e., the zeroth row) in a[1] is the first
one printed, so going from top-to-bottom, you are moving in latitude values
from south-to-north. Thus:

>>> print a[1][0,:]

[-90 -90 -90 -90 -90 -90 -90 -90 -90]

will print the −90 degrees latitude row in a[1]. Remember that 2-D arrays
in NumPy are indexed [row, col], so the slicing syntax [0,:] will select all
columns in the first row of a 2-D NumPy array.

57

4.7. GENERAL ARRAY OPERATIONS

4.7 General array operations
So far we’ve learned how to make arrays, ask arrays to tell us about them-
selves, and manipulate arrays. But what scientists really want to do with
arrays is make calculations with them. In this section, we discuss two ways
to do exactly that. Method 1 uses for loops, in analogue to the use of loops
in traditional Fortran programming, to do element-wise array calculations.
Method 2 uses array syntax, where looping over array elements happens im-
plicitly (this syntax is also found in Fortran 90 and later versions, IDL, etc.).

4.7.1 General array operations: Method 1 (loops)
The tried-and-true method of doing arithmetic operations on arrays is to use

Using for
loops to

operate on
arrays.

loops to examine each array element one-by-one, do the operation, and then
save the result in a results array. Here’s an example:

Example 33 (Multiply two arrays, element-by-element, using loops):
Consider this code:

1 import numpy as N

2 a = N.array([[2, 3.2, 5.5, -6.4],

3 [3, 1, 2.1, 21]])

4 b = N.array([[4, 1.2, -4, 9.1],

5 [6, 21, 1.5, -27]])

6 shape_a = N.shape(a)

7 product_ab = N.zeros(shape_a, dtype=’f’)

8 for i in xrange(shape_a[0]):

9 for j in xrange(shape_a[1]):

10 product_ab[i,j] = a[i,j] * b[i,j]

Can you describe what is happening in each line? (We haven’t talked about
xrange yet, but take a guess as to what it does.)

Solution and discussion: In the first four lines after the import line
(lines 2–5), I create arrays a and b. They are both two row, four column
arrays. In the sixth line, I read the shape of array a and save it as the variable
shape a. Note that shape a is the tuple (2,4). In the seventh line, I create a
results array of the same shape of a and b, of single-precision floating point
type, and with each element filled with zeros. In the last three lines (lines 8–
10), I loop through all rows (the number of which is given by shape a[0])
and all columns (the number of which is given by shape a[1]), by index.

58

4.7. GENERAL ARRAY OPERATIONS

Thus, i and j are set to the element addresses for rows and columns, respec-
tively, and line 10 does the multiplication operation and sets the product in
the results array product ab using the element addresses.

So, what is the xrange function? Recall that the range function provides
The xrange
function
makes
looping more
efficient.

an n-element list of the integers 0 to n−1, incremented by 1, and is useful for
providing the element addresses for lists (and arrays). The range function
creates the entire list in memory when it is called, but for the purposes of
looping through list/array element addresses, we’re not interested in being
able to access all the addresses all the time; we only need the element address
for the current loop iteration. That’s what xrange does; it provides only one
element of the array element addresses list at a time. This makes the loop
more efficient.

One other note: In this example, I make the assumption that the shape of
Do not use
logical
equality to
check
equality
between
sequences.

a and the shape of b are the same, but I should instead add a check that this
is actually the case. While a check using an if statement condition such as:

N.shape(a) != N.shape(b)

will work, because equality between sequences is true if all corresponding
elements are equal,3 things get tricky, fast, if you are interested in more com-
plex logical comparisons and boolean operations for arrays. For instance,
the logic that works for != doesn’t apply to built-in Python boolean opera-
tors such as and. We’ll see later on in Section 4.8.2 how to do element-wise
boolean operations on arrays.

So, why wouldn’t you want to use the looping method for general array
Loops are
slower than
array syntax.

operations? In three and a half words: Loops are (relatively) s-l-o-w. Thus,
if you can at all help it, it’s better to use array syntax for general array oper-
ations: your code will be faster, more flexible, and easier to read and test.

4.7.2 General array operations: Method 2 (array syntax)
The basic idea behind array syntax is that, much of the time, arrays interact

What is array
syntax?with each other on a corresponding element basis, and so instead of requiring

the user to write out the nested for loops explicitly, the loops and element-
wise operations are done implicitly in the operator. That is to say, instead of
writing this code (assume arrays a and b are 1-D arrays of the same size):

3See the “Built-in Types” entry in the online Python documentation at http://docs.python.
org/library/stdtypes.html#sequence-types-str-unicode-list-tuple-bytearray-buffer-xrange
(accessed March 26, 2012).

59

4.7. GENERAL ARRAY OPERATIONS

c = N.zeros(N.shape(a), dtype=’f’)

for i in xrange(N.size(a)):

c[i] = a[i] * b[i]

array syntax means you can write this code:

c = a * b

Let’s try this with a specific example using actual numbers:

Example 34 (Multiply two arrays, element-by-element, using array syn-
tax):

Type the following in a file and run it using the Python interpreter:

import numpy as N

a = N.array([[2, 3.2, 5.5, -6.4],

[3, 1, 2.1, 21]])

b = N.array([[4, 1.2, -4, 9.1],

[6, 21, 1.5, -27]])

product_ab = a * b

What do you get when you print out product ab?

Solution and discussion: You should get something like this:

>>> print product_ab

[[8. 3.84 -22. -58.24]

[18. 21. 3.15 -567.]]

In this example, we see that arithmetic operators are automatically de-
Arithmetic

operators act
element-wise
by default on

NumPy
arrays.

fined to act element-wise when operands are NumPy arrays or scalars. (Op-
erators do have function equivalents in NumPy, e.g., product, add, etc.,
for the situations where you want to do the operation using function syntax.)
Additionally, the output array c is automatically created on assignment; there
is no need to initialize the output array using zeros.

There are three more key benefits of array syntax. First, operand shapes
Array syntax

already
checks

compatibility.

are automatically checked for compatibility, so there is no need to check for
that explicitly. Second, you do not need to know the rank (i.e., whether it is
1-D, 2-D, etc.) of the arrays ahead of time, so the same line of code works

60

4.7. GENERAL ARRAY OPERATIONS

on arrays of any rank. Finally, the array syntax formulation runs faster than
the equivalent code using loops! Simpler, better, faster: pretty cool, eh? ,

Let’s try another array syntax example:

Example 35 (Another array syntax example):
Type the following in a Python interpreter:

import numpy as N

a = N.arange(10)

b = a * 2

c = a + b

d = c * 2.0

What results? Predict what you think a, b, and c will be, then print out those
arrays to confirm whether you were right.

Solution and discussion: You should get something like this:

>>> print a

[0 1 2 3 4 5 6 7 8 9]

>>> print b

[0 2 4 6 8 10 12 14 16 18]

>>> print c

[0 3 6 9 12 15 18 21 24 27]

>>> print d

[0. 6. 12. 18. 24. 30. 36. 42. 48. 54.]

Arrays a, b, and c are all integer arrays because the operands that created
those arrays are all integers. Array d, however, is floating point because it
was created by multiplying an integer array by a floating point scalar. Python
automatically chooses the type of the new array to retain, as much as possi-
ble, the information found in the operands.

61

4.7. GENERAL ARRAY OPERATIONS

4.7.3 Exercise on general array operations

� Exercise 14 (Calculate potential temperature from arrays of T and p):
Write a function that takes a 2-D array of pressures (p, in hPa) and a

2-D array of temperatures (T , in K) and returns the corresponding potential
temperature, assuming a reference pressure (p0) of 1000 hPa. Thus, the func-
tion’s return value is an array of the same shape and type as the input arrays.
Recall that potential temperature θ is given by:

θ = T
(

p0

p

)κ

where κ is the ratio of the gas constant of dry air to the specific heat of dry
air at constant pressure and equals approximately 0.286.

Solution and discussion: I will give two different solutions: one using
loops and the other using array syntax. Using loops, you get:

import numpy as N

def theta(p, T, p0=1000.0, kappa=0.286):

shape_input = N.shape(p)

output = N.zeros(shape_input, dtype=’f’)

for i in xrange(shape_input[0]):

for j in xrange(shape_input[1]):

output[i,j] = T[i,j] * (p0 / p[i,j])**(kappa)

return output

Note the use of keyword input parameters to provide potentially adjustable
Remember to

use return
when passing
a result out of

a function.

constants. Remember, to return anything from a function, you have to use
the return command.

Using array syntax, the solution is even terser:

import numpy as N

def theta(p, T, p0=1000.0, kappa=0.286):

return T * (p0 / p)**(kappa)

and the array syntax solution works for arrays of any rank, not just 2-D ar-
rays.

An aside on documenting code: Python has a robust set of standardized
ways to generate code documentation. The most basic construct, as you
might guess, is the humble but ever-important comment line. The pound

Python’s
comment
character.

sign (“#”) is Python’s comment character, and all text after that symbol is
ignored by the interpreter.

62

4.8. TESTING INSIDE AN ARRAY

The most basic, specialized, built-in construct for documenting code is
the docstring. These are strings set in triple quotes that come right after a

Documenting
with the
docstring.

def statement in a function. Here is my array syntax solution to Exercise 14
with a docstring added:

import numpy as N

def theta(p, T, p0=1000.0, kappa=0.286):

"""Calculate the potential temperature.

Returns a NumPy array of potential temperature that is

the same size and shape as the input parameters. The

reference pressure is given by p0 and kappa is the

ratio of the gas constant for dry air to the specific

heat of dry air at constant pressure.

Input parameters:

:p: Pressure [hPa]. NumPy array of any rank.

:T: Temperature [K]. NumPy array of any rank.

"""

return T * (p0 / p)**(kappa)

Finally, there are a number of document generation packages that auto-
The Sphinx
documenta-
tion
generation
package.

matically convert Python code and code docstrings into web documentation.
In the docstring example I give above, I use some reStructuredText conven-
tions that will be nicely typeset by the Sphinx documentation generator. See
http://docutils.sf.net/rst.html and http://sphinx.pocoo.org for details.

4.8 Testing inside an array
Often times, you will want to do calculations on an array that involves con-
ditionals. For instance, you might want to loop through an array of data and
check if any values are negative; if any exist, you may wish to set those ele-
ments to zero. To accomplish the first part of that task, you need to do some
kind of testing while going through an array.

In Python, there are a few ways of doing this. The first is to implement
this in a loop. A second way is to use array syntax and take advantage of
comparison operators and specialized NumPy search functions.

4.8.1 Testing inside an array: Method 1 (loops)
In this method, you apply a standard conditional (e.g., if statement) while
inside the nested for loops running through the array. This is similar to

63

4.8. TESTING INSIDE AN ARRAY

traditional Fortran syntax. Here’s is an example:

Example 36 (Using looping to test inside an array):
Say you have a 2-D array a and you want to return an array answerwhich

is double the value of the corresponding element in a when the element is
greater than 5 and less than 10, and zero when the value of that element in a
is not. What’s the code for this task?

Solution and discussion: Here’s the code:

answer = N.zeros(N.shape(a), dtype=’f’)

for i in xrange(N.shape(a)[0]):

for j in xrange(N.shape(a)[1]):

if (a[i,j] > 5) and (a[i,j] < 10):

answer[i,j] = a[i,j] * 2.0

else:

pass

The pass command is used when you have a block statement (e.g., a block
The pass

command in
blocks that do

nothing.

if statement, etc.) where you want the interpreter to do nothing. In this
case, because answer is filled with all zeros on initialization, if the if test
condition returns False, we want that element of answer to be zero. But,
all elements of answer start out as zero, so the else block has nothing to
do; thus, we pass.

Again, while this code works, loops are slow, and the if statement makes
it even slower. The nested for loops also mean that this code will only work
for a 2-D version of the array a.

4.8.2 Testing inside an array: Method 2 (array syntax)
Is there a way we can do testing inside an array while using array syntax?
That way, we can get the benefits of simpler code, the flexibility of code
that works on arrays of any rank, and speed. The answer is, yes! Because
NumPy has comparison and boolean operators that act element-wise and ar-
ray inquiry and selection functions, we can write a variety of ways of testing
and selecting inside an array while using array syntax. Before we discuss
some of those ways, we need some context about using NumPy comparison
operators and boolean array functions.

64

4.8. TESTING INSIDE AN ARRAY

NumPy comparison operators and boolean array functions

NumPy has defined the standard comparison operators in Python (e.g., ==,
<) to work element-wise with arrays. Thus, if you run these lines of code:

import numpy as N

a = N.arange(6)

print a > 3

the following array is printed out to the screen:

[False False False False True True]

Each element of the array a that was greater than 3 has its corresponding
element in the output set to True while all other elements are set to False.
You can achieve the same result by using the corresponding NumPy function
greater. Thus:

Using
comparison
operators on
arrays
generate
boolean
arrays.

print N.greater(a, 3)

gives you the same thing. Other comparison functions are similarly de-
fined for the other standard comparison operators; those functions also act
element-wise on NumPy arrays.

Once you have arrays of booleans, you can operate on them using boo-
lean operator NumPy functions. You cannot use Python’s built-in and, or,

Must use
NumPy
functions to
do boolean
operations on
arrays.

etc. operators; those will not act element-wise. Instead, use the NumPy func-
tions logical and, logical or, etc. Thus, if we have this code:

a = N.arange(6)

print N.logical_and(a>1, a<=3)

the following array will be printed to screen:

[False False True True False False]

The logical and function takes two boolean arrays and does an element-
wise boolean “and” operation on them and returns a boolean array of the
same size and shape filled with the results.

With this background on comparison operators and boolean functions
for NumPy arrays, we can talk about ways of doing testing and selecting in
arrays while using array syntax. Here are two methods: using the where
function and using arithmetic operations on boolean arrays.

65

4.8. TESTING INSIDE AN ARRAY

The where function

IDL users will find this function familiar. The Python version of where,
however, can be used in two ways: To directly select corresponding values
from another array (or scalar), depending on whether a condition is true,
and to return a list of array element indices for which a condition is true
(which then can be used to select the corresponding values by selection with
indices).

The syntax for using where to directly select corresponding values is the
following:

N.where(<condition>, <value if true>, <value if false>)
Using where
to get values

when a
condition is

true.

If an element of <condition> is True, the corresponding element of
<value if true> is used in the array returned by the function, while the corre-
sponding element of <value if false> is used if <condition> is False. The
where function returns an array of the same size and shape as <condition>
(which is an array of boolean elements). Here is an example to work through:

Example 37 (Using where to directly select corresponding values from
another array or scalar):

Consider the following case:

import numpy as N

a = N.arange(8)

condition = N.logical_and(a>3, a<6)

answer = N.where(condition, a*2, 0)

What is condition? answer? What does the code do?

Solution and discussion: You should get:

>>> print a

[0 1 2 3 4 5 6 7]

>>> print condition

[False False False False True True False False]

>>> print answer

[0 0 0 0 8 10 0 0]

The array condition shows which elements of the array a are greater than 3
and less than 6. The where call takes every element of array a where that is

66

4.8. TESTING INSIDE AN ARRAY

true and doubles the corresponding value of a; elsewhere, the output element
from where is set to 0.

The second way of using where is to return a tuple of array element
Using where
to get the
indices where
a condition is
true.

indices for which a condition is true, which then can be used to select the
corresponding values by selection with indices. (This is like the behavior
of IDL’s WHERE function.) For 1-D arrays, the tuple is a one-element tuple
whose value is an array listing the indices where the condition is true. For 2-
D arrays, the tuple is a two-element tuple whose first value is an array listing
the row index where the condition is true and the second value is an array
listing the column index where the condition is true. In terms of syntax,
you tell where to return indices instead of an array of selected values by
calling where with only a single argument, the <condition> array. To select
those elements in an array, pass in the tuple as the argument inside the square
brackets (i.e., []) when you are selecting elements. Here is an example:

Example 38 (Using where to return a list of indices):
Consider the following case:

import numpy as N

a = N.arange(8)

condition = N.logical_and(a>3, a<6)

answer_indices = N.where(condition)

answer = (a*2)[answer_indices]

What is condition? answer indices? answer? What does the code do?

Solution and discussion: You should have obtained similar results as
Example 37, except the zero elements are absent in answer and now you
also have a tuple of the indices where condition is true:

>>> print a

[0 1 2 3 4 5 6 7]

>>> print condition

[False False False False True True False False]

>>> print answer_indices

(array([4, 5]),)

>>> print answer

[8 10]

67

4.8. TESTING INSIDE AN ARRAY

The array condition shows which elements of the array a are greater than
3 and less than 6. The where call returns the indices where condition is
true, and since condition is 1-D, there is only one element in the tuple
answer indices. The last line multiplies array a by two (which is also
an array) and selects the elements from that array with addresses given by
answer indices.

Note that selection with answer indiceswill give you a 1-D array, even
Using where

to obtain
indices will
return a 1-D

array.

if condition is not 1-D. Let’s turn array a into a 3-D array, do everything
else the same, and see what happens:

import numpy as N

a = N.reshape(N.arange(8), (2,2,2))

condition = N.logical_and(a>3, a<6)

answer_indices = N.where(condition)

answer = (a*2)[answer_indices]

The result now is:

>>> print a

[[[0 1]

[2 3]]

[[4 5]

[6 7]]]

>>> print condition

[[[False False]

[False False]]

[[True True]

[False False]]]

>>> print answer_indices

(array([1, 1]), array([0, 0]), array([0, 1]))

>>> print answer

[8 10]

Note how condition is 3-D and the answer indices tuple now has
three elements (for the three dimensions of condition), but answer is again
1-D.

68

4.8. TESTING INSIDE AN ARRAY

Arithmetic operations using boolean arrays

You can also accomplish much of what the where function does in terms of
testing and selecting by taking advantage of the fact that arithmetic opera-
tions on boolean arrays treat True as 1 and False as 0. By using multipli-
cation and addition, the boolean values become selectors, because any value
multiplied by 1 or added to 0 is that value. Let’s see an example of how these
properties can be used for selection:

Example 39 (Using arithmetic operators on boolean arrays as selectors):
Consider the following case:

import numpy as N

a = N.arange(8)

condition = N.logical_and(a>3, a<6)

answer = ((a*2)*condition) + \

(0*N.logical_not(condition))

Solution and discussion: The solution is the same as Example 37:

>>> print a

[0 1 2 3 4 5 6 7]

>>> print condition

[False False False False True True False False]

>>> print answer

[0 0 0 0 8 10 0 0]

But how does this code produce this solution? Let’s go through it step-by-
Using
arithmetic
with boolean
arrays as
conditional
selectors.

step. The condition line is the same as in Example 37, so we won’t say
more about that. But what about the answer line? First, we multiply array a
by two and then multiply that by condition. Every element that is True in
condition will then equal double of a, but every element that is False in
conditionwill equal zero. We then add that to zero times the logical not
of condition, which is condition but with all Trues as Falses, and vice
versa. Again, any value that multiplies by True will be that value and any
value that multiplies by False will be zero. Because condition and its
“logical not” are mutually exclusive—if one is true the other is false—the
sum of the two terms to create answerwill select either a*2 or 0. (Of course,
the array generated by 0*N.logical not(condition) is an array of zeros,
but you can see how multiplying by something besides 0 will give you a
different replacement value.)

69

4.8. TESTING INSIDE AN ARRAY

Also, note the continuation line character is a backslash at the end of the
line (as seen in the line that assigns answer).

This method of testing inside arrays using arithmetic operations on boo-
lean arrays is also faster than loops.

An aside on a simple way to do timings: The time module has a func-
A simple way
of seeing how
fast your code

runs.

tion time that returns the current system time relative to the Epoch (a date
that is operating system dependent). If you save the current time as a variable
before and after you execute your function/code, the difference is the time it
took to run your function/code.

Example 40 (Using time to do timings):
Type in the following and run it in a Python interpreter:

import time

begin_time = time.time()

for i in xrange(1000000L):

a = 2*3

print time.time() - begin_time

What does the number that is printed out represent?

Solution and discussion: The code prints out the amount of time (in
seconds) it takes to multiply two times three and assign the product to the
variable a one million times. (Of course, it also includes the time to do the
looping, which in this simple case probably is a substantial fraction of the
total time of execution.)

4.8.3 Exercise on testing inside an array

� Exercise 15 (Calculating wind speed from u and v):
Write a function that takes two 2-D arrays—an array of horizontal, zonal

(east-west) wind components (u, in m/s) and an array of horizontal, merid-
ional (north-south) wind components (v, in m/s)—and returns a 2-D array of
the magnitudes of the total wind, if the wind is over a minimum magnitude,

70

4.9. ADDITIONAL ARRAY FUNCTIONS

and the minimum magnitude value otherwise. (We might presume that in
this particular domain only winds above some minimum constitute “good”
data while those below the minimum are indistinguishable from the mini-
mum due to noise or should be considered equal to the minimum in order to
properly represent the effects of some quantity like friction.)

Thus, your input will be arrays u and v, as well as the minimum mag-
nitude value. The function’s return value is an array of the same shape and
type as the input arrays.

Solution and discussion: I provide two solutions, one using loops and
one using array syntax. Here’s the solution using loops:

import numpy as N

def good_magnitudes(u, v, minmag=0.1):

shape_input = N.shape(u)

output = N.zeros(shape_input, dtype=u.dtype.char)

for i in xrange(shape_input[0]):

for j in xrange(shape_input[1]):

mag = ((u[i,j]**2) + (v[i,j]**2))**0.5

if mag > minmag:

output[i,j] = mag

else:

output[i,j] = minmag

return output

Here’s the solution using array syntax, which is terser and works with
arrays of all ranks:

import numpy as N

def good_magnitudes(u, v, minmag=0.1):

mag = ((u**2) + (v**2))**0.5

output = N.where(mag > minmag, mag, minmag)

return output

4.9 Additional array functions
NumPy has many array functions, which include basic mathematical func-

See other
listings for
more array
functions.

tions (sin, exp, interp, etc.) and basic statistical functions (correlate,
histogram, hamming, fft, etc.). For more complete lists of array func-
tions, see Section 10.3 for places to look. From the Python interpreter, you

71

4.10. SUMMARY

can also use help(numpy) as well as help(numpy.x), where x is the name
of a function, to get more information.

4.10 Summary
In this chapter, we saw that NumPy is a powerful array handling package
that provides the array handling functionality of IDL, Matlab, Fortran 90,
etc. We learned how to use arrays using the traditional Fortran-like method
of nested for loops, but we also saw how array syntax enables you to write
more streamlined and flexible code: The same code can handle operations
on arrays of arbitrary rank. With NumPy, Python can be used for all of the
traditional data analysis calculation tasks commonly done in the atmospheric
and oceanic sciences. Not bad, for something that’s free ,.

72

