
JohnnyWei-Bing Lin

A Hands-On Introduction to Using
Python in the Atmospheric and

Oceanic Sciences

http://www.johnny-lin.com/pyintro

2012

c© 2012 Johnny Wei-Bing Lin.
Some rights reserved. Printed version: ISBN 978-1-300-07616-2. PDF ver-
sions: No ISBNs are assigned.

This work is licensed under the Creative Commons Attribution-Noncom-
mercial-Share Alike 3.0 United States License (CC BY-NC-SA). To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

us or send a letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA.

Who would not want to pay money for this book?: if you do not need
a black-and-white paper copy of the book, a color PDF copy with functional
hyperlinks, have limited funds, or are interested in such a small portion of
the book that it makes no sense to buy the whole thing. The book’s web site
(http://www.johnny-lin.com/pyintro) has available, for free, PDFs of every
chapter as separate files.

Who would want to pay money for this book?: if you want a black-
and-white paper copy of the book, a color PDF copy with functional hy-
perlinks, or you want to help support the author financially. You can buy
a black-and-white paper copy of the book at http://www.johnny-lin.com/

pyintro/buypaper.shtml and a hyperlink-enabled color PDF copy of the book
at http://www.johnny-lin.com/pyintro/buypdf.shtml.

A special appeal to instructors: Instruction at for-profit institutions, as
a commercial use, is not covered under the terms of the CC BY-NC-SA, and
so instructors at those institutions should not make copies of the book for
students beyond copying permitted under Fair Use. Instruction at not-for-
profit institutions is not a commercial use, so instructors may legally make
copies of this book for the students in their classes, under the terms of the CC
BY-NC-SA, so long as no profit is made through the copy and sale (or Fair
Use is not exceeded). However, most instruction at not-for-profit institutions
still involves payment of tuition: lots of people are getting paid for their
contributions. Please consider also paying the author of this book something
for his contribution.

Regardless of whether or not you paid money for your copy of the book,
you are free to use any and all parts of the book under the terms of the CC
BY-NC-SA.

Chapter 2

Using the Python Interpreter and
Interactive Development
Environment

2.1 Getting and installing Python

In Ch. 1, we saw how Python is practically the best thing for AOS users since
sliced bread ,. Now that I’ve built-up your expectations, I need to describe
the first place where things are not all they should be in the Python universe,
and that is the level of support for installation and new science users. In con-
trast with commercial data analysis software companies (e.g., MathWorks,
Wolfram Research, etc.), which make installation a piece-of-cake and pro-
vide copious amounts of online, print, and live-human support, installation
of Python and all the libraries needed by science users can be tricky. And
once the install is complete, there is no simple and comprehensive way to
find out everything you have and how to use it.

So, if you’re a newbie, what do you do? Unfortunately, there are many
ways to install Python and the needed scientific libraries. In this section, I
will describe three different ways: just choose the one that works best for
you. Each has its pluses and minuses. The first two do not require you to
be a budding system administrator (though you will need the password of a
user with administrator privileges). The last one requires you to build some-
thing from source, so that installation method is for those who are willing to
experiment a little more. Please pay attention to the footnotes in this section;
that’s where I’ll put the addresses to the web pages you’ll want to access.

7

2.1. GETTING AND INSTALLING PYTHON

2.1.1 The easiest way: EPD

The easiest way to get Python is to install the Enthought Python Distribu-
EPD is the

easiest way to
install Python

and the
needed

scientific
libraries.

tion (EPD),1 which bundles Python with over 100 modules and packages in
an easy to install package. The full distribution is free to employees and
students of academic institutions.2 Commercial users have to pay money.
Once you have EPD installed, you will have both Python and all the libraries
you need to do all the examples and exercises in this book; see Enthought’s
“Getting Started with EPD” instructions for information on running EPD
once you have it installed.3 EPD is available for Mac OS X, Windows,
GNU/Linux, and Solaris.

Enthought also offers a stripped down version of EPD, free to everyone
(not just those in academia), called EPD Free.4 EPD Free is enough to do
most of the examples and exercises in this book, except for the overlaying
of continental boundary maps on matplotlib plots. In this book, I use the
Basemap package to plot those boundaries, and Basemap is not included
with EPD Free (though Basemap is included with the full EPD).

If you already have EPD Free and you want to install Basemap, you can
use Enthought’s package manager to do so: just type enpkg basemap at the
command-line.5 However, you need to have an EPD subscription in order to
use enpkg; that subscription costs money.6

2.1.2 The mostly easy way, but for Ubuntu 12.04

With the Ubuntu 12.04 GNU/Linux distribution (and perhaps later versions),
Installing

using a
package

manager on
Ubuntu
12.04.

the standard package manager will enable you to install everything you
need to run Python and do all the examples and exercises in this book.7 Log
in as a user with administrator privileges, open a terminal window, and type
in the following at the Unix command-line:

1http://www.enthought.com/products/epd.php (accessed August 16, 2012).
2The academic download is accessed on this page: http://www.enthought.com/products/

edudownload.php (accessed August 16, 2012).
3http://www.enthought.com/products/epdgetstart.php (accessed August 16, 2012).
4http://www.enthought.com/products/epd free.php (accessed August 16, 2012).
5http://www.enthought.com/products/update.php (accessed August 16, 2012).
6http://www.enthought.com/products/getepd.php (accessed August 16, 2012).
7See http://packages.ubuntu.com/precise/python for a list of Python packages on Ubuntu

12.04 (accessed August 16, 2012).

8

2.2. GETTING AND INSTALLING THE COURSE FILES

sudo apt-get update

sudo apt-get install python2.7

sudo apt-get install python-matplotlib

sudo apt-get install python-scipy

sudo apt-get install python-scientific

sudo apt-get install python-mpltoolkits.basemap

Feel free to substitute in your favorite package manager (I actually use ap-
titude instead) for apt-get. After these commands are run, you will have
Python 2.7 (plus select libraries) installed.

2.1.3 The not as easy way, but it’s still free
If you aren’t running Ubuntu 12.04, but you are using Mac OS X or an-
other version of GNU/Linux, you can still use a package manager to install
Python and most of the needed scientific packages for this book and build
the final package needed (Basemap) from source. See the PyAOS articles
on installing on a Mac8 and installing on GNU/Linux9 for details. (Note
these articles address an installation using Python 2.5; the names may have
changed for Python 2.7 related packages.)

While Python works fine on Windows, for the rest of this book, I will
assume that you are using a Unix system (e.g., Mac OS X, GNU/Linux,
etc.). For many operating systems, the default distribution of Python and
associated applications are located in /usr/bin; if your system is different,
please substitute accordingly anytime you see /usr/bin in this book.

2.2 Getting and installing the course files
Throughout this book, you will find reference to files from a directory called
course files. This directory of files is not part of a Python distribution but is
instead a set of files I have created for this book. This directory of files is
available online at the book’s website; see p. viii for details on accessing the
site and files.

2.3 The Python interpreter
Python is an interpreted language, meaning that you just type in a command
in Python, press Enter, and Python will execute that command right then and

8http://pyaos.johnny-lin.com/?p=190 (accessed August 16, 2012).
9http://pyaos.johnny-lin.com/?p=76 (accessed August 16, 2012).

9

2.3. THE PYTHON INTERPRETER

there. This is similar to the behavior of Matlab, IDL, and Mathematica, and
the environment where this all occurs in Python is called the interpreter.
Let’s try an example:

Example 1 (My first Python interpreter command):
Start out by opening a terminal window. Everything you do will be in

that window.

• Start the Python interpreter by typing python at the Unix command-
line. You should get something that looks like Figure 2.1. If this
doesn’t happen, here are some possible fixes:

Questions to
ask if you

can’t start the
Python

interpreter.

– If your environment path is not set up correctly, you may have to
type in the full path name to your Python binary. One common
name is /usr/bin/python.

– On some other installations, you may have to type in the version
of Python you want, e.g., python2.5.

– If you are using Mac OS X and you installed Python using EPD,
you may have to type something like:
/Library/Frameworks/Python.Framework/Versions/

7.3/bin/python

instead of just python (or you may want to add the EPD Python
path to your shell environment’s PATH variable).

– If you are using Mac OS X and you installed Python using the
Fink package manager, you may have to type something like
/sw/bin/python2.5.

• When you see the >>> prompt, type:

print "hello world!"

and press Enter.

• The interpreter immediately executes the command, printing the string
hello world! to screen.

• To exit the interpreter and return to the Unix command-line, type Ctrl-
Press Ctrl-d

to exit the
interpreter.

d.

10

2.4. THE COMMAND-LINE ENVIRONMENT

Figure 2.1: Starting the Python interpreter in a terminal window.

The Python interpreter has two very helpful interpreter commands:

• help(x): This shows online help for the command x.

• dir(): This shows (approximately) all the variables and functions
The help and
dir

commands.

defined in the current scope.

We’ll talk more about these commands as we go along. For now, just
keep them in mind.

Usually, you will write code in a file and ask Python to execute the code,
Other
development
environments
for Python.

rather than doing everything interactively in the interpreter. There are a num-
ber of excellent and sophisticated programming (or development) environ-
ments available for Python, such as IPython,10 Python(x,y),11 and Spyder.12

For our purposes, we’ll go basic and consider two very simple ways of set-
ting up a programming environment.

2.4 The command-line environment
In this example, we set up a programming environment using multiple ter-
minal windows.

Example 2 (A simple command-line programming environment):

• Open two terminal windows on your desktop.

• In one window, use a text editor (e.g., vim, emacs, gedit) to open a file
foo.py.

10http://ipython.scipy.org (accessed August 16, 2012).
11http://code.google.com/p/pythonxy (accessed August 16, 2012).
12http://packages.python.org/spyder (accessed August 16, 2012).

11

2.5. THE IDLE ENVIRONMENT

• In that file, type: print "hello world!"

• Save the file.

• In the other window, type: python -i foo.py

• Python will execute the commands in your file and leave you in the
interpreter, where you can type in more commands, if you wish.

Note, to automatically exit to the operating system after executing the
Python commands in your file, do not include the -i option.

The -i
option;

interpreter
command

history.

An aside regarding command history: On many Unix systems, the up-
and down-arrow keys allow you to scroll through the history of the com-
mands typed into the interpreter, with the up-arrow scrolling into the past
and the down-arrow scrolling back towards the present. This feature, how-
ever, is a function of how readline is implemented in the operating system,
so this may or may not work for you.

2.5 The IDLE environment
Python comes with its own interactive development environment called
IDLE. IDLE is actually written in Python, using the Tk GUI widgets sys-
tem.

Example 3 (Using IDLE):

• To start IDLE, at the command-line, type: idle &

– The ampersand puts the process in the background.

– If you are using Mac OS X, you may have to first start up X11.

– Sometimes you have to specify the version number of IDLE, e.g.,
idle2.5. On Ubuntu, it might be called idle-python2.7, or
something similar.

• A Python Shell window will automatically open up. (You should get
IDLE has a
source code

window and a
shell window.

something like what is shown in Figure 2.2, though yours will probably
be a little larger.) This window contains a Python interpreter (shown
by the >>> prompt), and so whenever in this book I talk about typing
something into the interpreter, if it’s short, you can type it in here.

12

2.6. EXERCISES USING PYTHON PROGRAMMING
ENVIRONMENTS

Figure 2.2: The Python shell in IDLE, just started.

• In the menu bar of the Python Shell window, pick File → New Win-
dow. (This is a window for a code file. Whenever in this book I talk
about typing something into the interpreter, and it’s long, type it in
here, save it, and run it as described in the next few bullet points.)

• In that window, type: print "hello world!"

• Save the file as foo.py using File→ Save.

• In that same window (your code window), pick Run→ Run Module.

• Python will execute, in the Python Shell window, the commands you
typed in your code file.

An aside regarding command history: In IDLE, the up- and down-arrows
generally do not work to access command history. Instead, place the mouse
on the line of the Python Shell you want to execute again, click on that line
(i.e., click on the left mouse button; do not select or highlight the line), then
press Return, and the line will be duplicated at the current interpreter cursor.

Command
history in
IDLE.

If you press Return again, that line will be executed.

2.6 Exercises using Python programming envi-
ronments

Exercises are your opportunity to implement what you’ve learned by trying
out the examples; usually, exercises are permutations of topics you’ve seen
in the examples. Try the following exercises to help you get used to the

13

2.6. EXERCISES USING PYTHON PROGRAMMING
ENVIRONMENTS

command-line and IDLE environments. Exercise 2 also introduces using
Python as a simple calculator.

� Exercise 1 (Printing some words to the screen):

• In your first terminal window, open a file and type in a series of print
The print
command. commands, operating on strings, one on each line. For instance:

print "My name is Johnny Lin."

print "I think Python is neat."

print "I wish I had used it for my Ph.D."

• Save the file.

• In your second terminal window, run the file. Did you get what you
expected?

• Change one of the lines and add another line printing additional text.
Save the file and re-run it.

� Exercise 2 (Using Python as a simple calculator):

• In your first terminal window, open a file and type in a series of print
commands, with an arithmetic calculation expression as the argument,
one on each line. For instance:

Python as a
calculator.

print 5*4

print 6/2

print 13+5+7

print 6**2

• Save the file. Predict what will happen when you run the file.

• In your second terminal window, run the file. Did you get what you
predicted?

• Change one of the lines in the file, save the file, and re-run it.

14

2.6. EXERCISES USING PYTHON PROGRAMMING
ENVIRONMENTS

Solution and discussion: (Cover this up if you haven’t finished the ex-
ercise!) We’ll be talking more about this in Ch. 3, but if you typed in a case

Integer
division
discards the
remainder.

where you divided two integers, and the division was not even, you might
have encountered results you did not expect. For integer division, when the
two operands are both integers, Python throws away the remainder and re-
turns only the quotient.

� Exercise 3 (Getting used to the IDLE environment):
Do Exercises 1 and 2, but using the IDLE environment.

15

2.6. EXERCISES USING PYTHON PROGRAMMING
ENVIRONMENTS

16

