
JohnnyWei-Bing Lin

A Hands-On Introduction to Using
Python in the Atmospheric and

Oceanic Sciences

http://www.johnny-lin.com/pyintro

2012



c© 2012 Johnny Wei-Bing Lin.
Some rights reserved. Printed version: ISBN 978-1-300-07616-2. PDF ver-
sions: No ISBNs are assigned.

This work is licensed under the Creative Commons Attribution-Noncom-
mercial-Share Alike 3.0 United States License (CC BY-NC-SA). To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

us or send a letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA.

Who would not want to pay money for this book?: if you do not need
a black-and-white paper copy of the book, a color PDF copy with functional
hyperlinks, have limited funds, or are interested in such a small portion of
the book that it makes no sense to buy the whole thing. The book’s web site
(http://www.johnny-lin.com/pyintro) has available, for free, PDFs of every
chapter as separate files.

Who would want to pay money for this book?: if you want a black-
and-white paper copy of the book, a color PDF copy with functional hy-
perlinks, or you want to help support the author financially. You can buy
a black-and-white paper copy of the book at http://www.johnny-lin.com/

pyintro/buypaper.shtml and a hyperlink-enabled color PDF copy of the book
at http://www.johnny-lin.com/pyintro/buypdf.shtml.

A special appeal to instructors: Instruction at for-profit institutions, as
a commercial use, is not covered under the terms of the CC BY-NC-SA, and
so instructors at those institutions should not make copies of the book for
students beyond copying permitted under Fair Use. Instruction at not-for-
profit institutions is not a commercial use, so instructors may legally make
copies of this book for the students in their classes, under the terms of the CC
BY-NC-SA, so long as no profit is made through the copy and sale (or Fair
Use is not exceeded). However, most instruction at not-for-profit institutions
still involves payment of tuition: lots of people are getting paid for their
contributions. Please consider also paying the author of this book something
for his contribution.

Regardless of whether or not you paid money for your copy of the book,
you are free to use any and all parts of the book under the terms of the CC
BY-NC-SA.



Glossary

attribute data bound to an object that are designed to be acted on by meth-
ods also bound to that object.

calling execute or run a function.

class the template or “pattern” all instances of that class follow.

data coordinates a coordinate system for a plot where locations are speci-
fied by the values of the x- and y-axes data ranges.

delimit show where a sequence or collection begins and ends.

development environment an application that facilitates software develop-
ment, often by providing coding, documentation, debugging, and exe-
cution tools in one place.

docstring a triple-quote delimited string that goes right after the def state-
ment (or similar construct) and which provides a “help”-like descrip-
tion of the function.

dynamically typed variables take on the type of whatever value they are set
to when they are assigned.

exception an error state in the program that cannot be processed by the cur-
rent scope.

immutable a variable/object that cannot be changed.

import compile a module or package and make what is in the module or
package accessible to the Python program that is doing the importing.

inherit incorporate the attribute and method definitions of another class into
a definition of a new class of objects.

171



Glossary

inheritance dealing with inheriting attribute and method definitions of an-
other class into a definition of a new class of objects.

instance an object that is the specific realization of a class of objects.

instantiate create an instance of a class.

instantiating creating an instance of a class.

instantiation the act of creating an instance of a class.

interpreter the execution environment for Python commands.

iterable a data structure that one can go through, one element at a time; in
such a structure, after you’ve looked at one element of it, it will move
you on to the next element.

iterator used nearly interchangably with the noun form of “iterable”.

method functions bound to an object that are designed to act on the data
also bound to that object.

module an importable Python source code file that typically contains func-
tion, class, and variable object definitions.

multi-paradigm language a computer language that supports multiple pro-
gramming methodologies, for instance, object-oriented programming
and procedural programming.

mutable a variable/object that can be changed.

namespace a set of function, variable, class, etc. names; these names can be
stored inside an object variable and referenced via that variable.

newline character a special text code that specifies a new line; the specific
code is operating system dependent.

object a “variable” that has attached to it both data (attributes) and functions
designed to act on that data (methods).

object file for a compiled language, this is a file produced by the compiler
after compiling the source code file; this is not an object in the sense
of object-oriented programming.

172



Glossary

package a directory of importable Python source code files (and, potentially,
subpackages) that typically contains function, class, and variable ob-
ject definitions.

package manager a program that streamlines the installation of tools and
applications as part of an operating system or distribution; this is not
to be confused with a Python package, which is not, in general, an
operating system or distribution package.

procedural programming a programming paradigm where a program is
broken up into discrete procedures or subroutines, each of which do
a specified task and communicate with the rest of the program solely
(ideally) through input and output variables that are passed in argu-
ment lists and/or return values..

PyAOS a web community whose goal is to support the use of Python in the
atmospheric and oceanic sciences; see http://pyaos.johnny-lin.com.

rank the number of dimensions in an array; thus, a 2-D array has rank 2.

runtime when some code or a program is actually executing.

shape a tuple whose elements are the number of elements in each dimension
of an array; in Python, the elements are arranged so the fastest vary-
ing dimension is the last element in the tuple and the slowest varying
dimension is the first element in the tuple.

terminal window a text window in which you can directly type in operating
system and other commands.

typecode a single character string that specifies the type of the elements of
a NumPy array.

173



Glossary

174



Acronyms

AMS American Meteorological Society.

AOS atmospheric and oceanic sciences.

API application programming interface.

CDAT Climate Data Analysis Tools.

cdms Climate Data Management System.

CISL Computational Information Systems Laboratory.

dpi dots per inch.

EPD Enthought Python Distribution.

GCM general circulation model.

GUI graphical user interface.

HOPS Hyperslab OPerator Suite.

i/o input/output.

IDL Interactive Data Language.

LLNL Lawrence Livermore National Laboratory.

NCAR National Center for Atmospheric Research.

NGL NCAR Graphics Language.

NRCC Northeast Regional Climate Center.

175



Acronyms

OO object-oriented.

OOP object-oriented programming.

PCMDI Program for Coupled Model Diagnostics and Intercomparison.

UV-CDAT Ultrascale Visualization-Climate Data Analysis Tools.

vcs Visualization Control System.

176



Bibliography

Basili, V. R. and Selby, R. W. (1987). Comparing the effectiveness of soft-
ware testing strategies. IEEE Trans. Software Eng., SE-13(12):1278–
1296.

Curtis, B. (1995). Objects of our desire: Empirical research on object-
oriented development. Human-Computer Interaction, 10:337–344.

Lin, J. W.-B. (2009). qtcm 0.1.2: a Python implementation of the Neelin-
Zeng Quasi-Equilibrium Tropical Circulation Model. Geosci. Model Dev.,
2:1–11, doi:10.5194/gmd–2–1–2009.

Lin, J. W.-B. (2012). Why Python is the next wave in earth sciences com-
puting. Bull. Amer. Meteor. Soc., (submitted).

Martelli, A. (2006). Python in a Nutshell. O’Reilly Media, Sebastopol, CA,
2nd edition.

177



BIBLIOGRAPHY

178



Index

allclose, 19
append, 24
arange, 49, 50
ArcGIS, 167
arguments, see parameters
array, 40, 48
arrays, 47

array syntax, 59, 60
boolean, 65
comparisons, 59, 64–71
compatibility checking, 60
converting types, 55
creating, 47, 50, 55
data types, 48, 53, 55
element ordering, 51
flexible code, 54, 64
help, 72
indices, 50
inquiry, 53
line continuation, 52
looping through, 58
loops vs. array syntax, 59
multi-dimensional, 51
operations, 58, 60, 69
operators as functions, 60
rank, 53, 60
reshape, 54
shape, 53
size, 53, 54
slicing, see slicing, 84
subarrays, 53
typecodes, see arrays, data types

assignment, 17, 74, 132, 140

dictionary elements, 95
list elements, 23, 26
reference vs. value, 140
using dictionaries for, 93

assignValue, 84
astype, 55, 77, 91, 102
attrgetter, 111
attributes, 41, 98, 138

delete, 133
get, 133
inquiry, 133
listing, 42
private, 101
public, 102
setting, 133

axis, 158

backslash
line continuation, 26
string character, 19

barbs, 156
Basemap, 158

coastlines, 160
contour plots on a map, 159
cylindrical projection, 160
installing, 159
latitude lines, 160
longitude lines, 160

boxfill, 124

calculator, 14
call , 160

Callahan, Steven, 5
CapWords, 105

179



INDEX

case sensitivity, 18
CDAT, 78, 80, 167
cdms2, 124
clabel, 155, 157
clarity, 2
class, 98, 104
close, 74
cm, 155
cmap, 155
colons, 34
colorbar, 155, 158
colors, 155
command history, 12, 13
comment character, 62
commercial software, 7
common blocks, 118
concatenate, 55
continuation character, see backslash,

line continuation
contour, 154, 158
contour plots, see matplotlib, contour

plots
contourf, 155, 158
copy, 140
correlate, 71
count, 100
course files, viii, 9
createDimension, 84
createVariable, 84, 85
Ctrl-d, 10
cumsum, 103

data analysis, 89
dynamic, 131
missing values, 121

deepcopy, 140
def, 29, 63, 104
delattr, 132
delimiting code blocks, 30
development environments, 11
dict , 137

dictionaries, 26, 93, 94, 137
dynamically filling, 95
flexible code, 95, 134
keys, 27, 29
methods, 27
values, 27

dir, 11, 42, 99
directory listing, 93
doc , 101

docstrings, see documenting code
documenting code, 62, 166

docstrings, 63
Doutriaux, Charles, 124, 125
Drach, Bob, 124, 125
dtype, 48, 53, 103
dynamically typed, see types, dynamic

elif, 34
else, 34
Enthought Python Distribution, 8
Epoch, 70
Epydoc, 166
except, 44
exceptions

exception classes, 43, 45
handling, 44, 165
throwing, 43

exp, 71

f2py, 166
False, 20
fft, 71
figure, 150, 152
file input/output, 90

close file objects, 74
file objects, 74
multiple-column text, 79
netCDF, see netCDF
open to append, 74
open to read, 74
open to write, 74

180



INDEX

reading a text file, 75
single-column text, 77
writing to a text file, 75

filled, 128, 129
fill value, 123, 128
Fiorino, Michael, 5
float, 76, 78
fontsize, 155
for, 34
free gift, ix
functional programming, 1
functions, 29, 138

as objects, 94
calling, 138
parameters, see parameters
return values, 29, 62

getattr, 132, 138
getValue, 81
glob, 93
GNU/Linux, 8, 9
GRIB, 87

hamming, 71
hasattr, 132
has key, 28
HDF, 87
hello world, 10, 12
help, 11, 72
histogram, 71
Hunter, John, 144

id, 141
IDL to Python, 168
IDLE, 12
if, 33, 64
import, 39
importing

aliasing, 41
data, 41
functions, 41

indentation, 29

inheritance, 106, 165, 166
init , 104, 106, 111
insert, 24
installing, 7
int, 76, 95
interp, 71
interpreter, 10–11

exit, 10, 12
IPython, 11
is, 21
isupper, 100

join, 76

keys, 28
kurtosis, 96

len, 22, 38
levels, 154, 155
line plots, see matplotlib, line plots
linesep, 77
Linux, see GNU/Linux
lists, 22, 137

complex references, 23
indices, 22, 23
initialize, 38
lengths, 22
looping through, 34
methods, 24
shuffling, 139
slicing, see slicing

logical testing, 33
compound tests, 33

logical and, 65
logical not, 69
logical or, 65
looping, 34

by indices, 35
iterators, 35

ma, 40, 126
Mac OS X, 9

181



INDEX

main , 112
map projections, see Basemap
masked arrays, 40, 122, 126–130

converting to an array, 128
creating, 126, 127
fill values, 123, 128
masks, 123, 129
operations, 123, 130

masked variables, 122, 124
creating, 126

masked array, 126
masked greater, 127
masked where, 127
Matlab to Python, 168
matplotlib, 143

axis labeling, 153
Basemap, see Basemap
color bars, 155
color maps, 155
colors, 145, 149
contour levels, 154
contour plots, 154
contour plots on a map, 159
displaying vs. saving figures, 152
filled contour plots, 155
line and marker property listings,

146
line plots, 144
lined and filled contour plot, 155
linestyle, 145, 147
linewidth, 145
map projections, see Basemap
markers, 145, 148
multiple curves on one figure, 151
multiple independent figures, 150
negative contours dashed, 155
pyplot, 144
save figure, 152, 154
save figure then visualize, 154

save figure without displaying, 147,
154

using LATEX to annotate plots, 146
visualizing plots, 144
wind barbs, 156

max, 42
mean, 90
median, 90
meshgrid, 56, 117, 156
methods, 41, 98, 99, 138

calling, 100, 102
defining, 104, 109
delete, 133
get, 133
inquiry, 133
listing, 42
private, 101
public, 102
setting, 133

min, 42
missing values, see data analysis, miss-

ing values; masked arrays
modeling, 137, 141
modules, 39

importing, 39, 40
submodules, 40

name , 112
namespaces, 2, 40

module names vs. namespaces, 41
preventing collisions, 41, 94

netCDF
creating dimensions, 84
creating variable objects, 84
dimensions, 80, 81
file objects, 81
filling array variables, 84
filling scalar variables, 84
global attributes, 80, 83
metadata, 82
reading a variable, 81

182



INDEX

structure, 80
unlimited dimension, 83
variables, 80, 81

newline character, 19, 75, 77, 78
nlevels, 154
None, 21
Noon, William, 6
NumPy, see also arrays, 40, 47, 126

importing, 47, 49, 126

object, 106
object-oriented programming, 97–99

vs. procedural, 113, 115, 119, 120,
137

objects, 110
attributes, see attributes
calling, 160
classes, 98, 104, 110
inheritance, see inheritance
instances, 98, 106, 110
instantiation, 104, 116, 134
listing attributes and methods, 42,

99
methods, see methods
programming, see object-oriented

programming
syntax, 41, 100

open, 74, 90
OpenDAP, 167
operators

addition, 18
defining, 101
division, 15, 18, 19
equal, 18, 21
exponentiation, 18
greater than, 18
greater than or equal to, 18
is, 21
less than, 18
less than or equal to, 18
logical, 20

multiplication, 18
not equal, 18
subtraction, 18

ordinal value, 22
orientation, 155
os, 77, 166

paths, 166

package manager, 8
packages, see modules
pandas, 167
parameters

functions, 29, 30
initialize, 22, 31, 134
keyword, 30
passing in lists of arguments, 32
positional, 30

ParaView, 162
pass, 64
permutations, 139
platform independence, 1, 77, 166
plot, 144
potential temperature, 62
print, 14, 19, 102
procedural programming, 98

vs. object-oriented, 113, 115, 119,
120

programming
dynamic subroutine management,

137
dynamic variable management, 131,

133
provenance management, 3
PyAOS, 169
PyGrADS, 162, 167
PyNGL, 78, 143, 162, 167
PyNIO, 80, 87, 167
pyplot, see matplotlib, pyplot
pysclint, 80, 87
PyTables, 73, 80, 87
pytest, 166

183



INDEX

Python(x,y), 11
PYTHONPATH, 41
PyUnit, see unittest

raise, 43
range, 35
rank, 53
ravel, 55, 103
readline, 75
readlines, 75, 79
reference manuals, 168
remove, 24
repeat, 55
reshape, 54, 103
resize, 103
reStructuredText, 63
return, 29, 62
reverse, 42
round, 103
RPy, 167
runlist, 137

SAGE, 167
Saravanan, R., 136
savefig, 152, 154, 158
ScientificPython, 80

importing, 80
SciPy, 160, 165, 167

importing, 165
scripting, 1
self, 104, 107, 110
setattr, 107, 132
shape, 53, 102
show, 144, 158
sin, 40, 71
size, 53
skew, 96
slicing

arrays, 50, 53
lists, 23
strings, 25

sorted, 28, 111, 112
sorting, 93, 112
Sphinx, 63, 166
split, 76
Spyder, 11
std, 90
strings, 19

attributes, 99
concatenation, 20, 76, 114
converting, 76
methods, 99
splitting, 76
triple quotes, 20

style guide, 46
subplot, 156
sys, 166

search path, 166

T, 102, 103
tab character, 19, 76, 79
terminal window, 11
testing, 112, 166
time, 70
timings, 70
title, 99
Tk, 12
transpose, 103
transpose, 55, 102
True, 20
try, 44
tutorials, 168
typecodes, see arrays, data types
types

arrays, see arrays
basic, 17
booleans, 20
dictionaries, see dictionaries
dynamic, 17, 22, 35, 92
floating, 19
integers, 19
lists, see lists

184



INDEX

NoneType, 21
strings, see strings
tuples, 25
upcasting, 19

underscore, see attributes, private; meth-
ods, private

unittest, 112, 166
upper, 99, 100
UV-CDAT, see also CDAT; cdms2, 80,

87, 124, 162, 167

ValueError, 43, 44
values, 28
vcs, 124, 143
VisTrails, 162
visualization, 143, 162
VPython, 163

weather maps, 3
where, 66, 67
while, 36
widgets, 12
Williams, Dean, 124, 125
Windows, 8
write, 75
writelines, 75
WxMAP2, 3

xrange, 59

zeros, 49

185



INDEX

186



About the Author

Johnny Wei-Bing Lin graduated from Stanford University
with a B.S. in Mechanical Engineering and an M.S. in Civil
Engineering-Water Resources. After working as an environ-
mental engineer, he returned to school and received his Ph.D.
in Atmospheric Sciences from UCLA. His atmospheric sci-
ences research is focused on stochastic convective param-
eterizations, ice-atmosphere interactions in the Arctic, and
simple frameworks for modularizing climate models. He
has chaired the AMS Python Symposiums and has taught or
co-taught some of the AMS Python short courses. Johnny
also helps coordinate the PyAOS mailing list and blog (http:
//pyaos.johnny-lin.com), an effort at building up the atmo-
spheric and oceanic sciences Python community. Currently,
he is a Professor of Physics at North Park University in
Chicago.





Colophon

This book was written using PDFLATEX (PDFTEX 3.1415926-
1.40.10-2.2) and the Vim editor, running on an Ubuntu 12.04
GNU/Linux system. Times-like fonts are provided by the TX
Fonts package (http://www.ctan.org/pkg/txfonts). The title
page and examples environment are based on the “titleTMB”
example from Peter Wilson’s July 13, 2010 work Some Ex-
amples of Title Pages (http://www.ctan.org/tex-archive/info/

latex-samples/TitlePages).


