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Outline
 Why Python?
 Python tools for data analysis:  CDAT.
 Using Python to make models more 

modular:  The qtcm example.



Why Python?:  Topics
 What is Python?
 Advantages and disadvantages.
 Why Python is now gaining momentum in 

the atmospheric-oceanic sciences (AOS) 
community.

 Examples of how Python is used as an 
analysis, visualization, and workflow 
management tool.



What is Python?
 Structure:  Is a scripting, procedural, as well 

as a fully native object-oriented (O-O) 
language.

 Interpreted:  Loosely/dynamically-typed and 
interactive.

 Data structures:  Robust built-in set and users 
are free to define additional structures.

 Array syntax:  Similar to Matlab, IDL, and 
Fortran 90 (no loops!).

 Platform independent, open-source, and free!



Python's advantages
 Concise but natural syntax, both arrays and non-arrays, 

makes programs clearer.  “Python is executable 
pseudocode. Perl is executable line noise.”

 Interpreted language makes development easier.
 Object-orientation makes code more robust/less brittle.
 Built-in set of data structures are very powerful and useful 

(e.g., dictionaries).
 Namespace management which prevents variable and 

function collisions.
 Tight interconnects with compiled languages (Fortran via 

f2py and C via SWIG), so you can interact with compiled 
code when speed is vital.

 Large user and developer base in industry as well as 
science (e.g., Google, LLNL PCMDI).



Python's disadvantages
 Runs much slower than compiled code (but there are tools 

to overcome this).
 Relatively sparse collection of scientific libraries compared 

to Fortran (but this is growing).



Why AOS Python is now gaining momentum
 Python as a language was developed in the late 1980s, but even as late 

as 2004, could be considered relatively “esoteric.”
 But by 2005, Python made a quantum jump in popularity, and has 

continued to grow.
 Now is ranked 8th in the June 2011 TIOBE Programming Community 

Index (which indicates the “popularity” of languages).  Fortran is ranked 
33rd, Matlab 23rd, and IDL is in the undifferentiated 50-100th group.

http://www.paulgraham.com/pypar.html, http://www.tiobe.com/index.php/paperinfo/tpci/Python.html



Why AOS Python is now gaining momentum (cont.)

 Around the same time, key tools for AOS use became 
available:
 In 2005, NumPy was developed which (finally) provided a 

standard array package.
 SciPy was begun in 2001 and incorporated NumPy to create 

a one-stop shop for scientific computing.
 CDAT 3.3 was released in 2002, which proved to be the 

version that really took off (the current version is 5.2).
 PyNGL and PyNIO were developed in 2004 and 2005, 

respectively.
 matplotlib added a contouring package in the mid-2000's.

http://www.scipy.org/History_of_SciPy
http://www.pyngl.ucar.edu/Images/history.png



Why AOS Python is now gaining momentum (cont.)

 Institutional support in the AOS community now includes:
 Lawrence Livermore National Laboratory's Program for 

Climate Model Diagnosis and Intercomparison (LLNL 
PCMDI) produces CDAT, etc.

 National Center for Atmospheric Research Computational 
and Information Systems Laboratory (NCAR CISL) produces 
PyNGL and PyNIO.

 Center for Ocean-Land-Atmosphere Studies/Institute of 
Global Environment and Society (COLA/IGES) produces 
PyGrADS.

 American Meteorological Society (AMS):  Sponsored an 
Advances in Using Python symposium at the 2011 AMS 
Annual Meeting (the symposia will reprise in 2012) as well as 
a Python short course.

 AOS Python users can now be found practically anywhere.
 An overview of AOS Python resources is found at the 

PyAOS website:  http://pyaos.johnny-lin.com.



Example of visualization:  Skew-T and 
meteograms

 All plots on this slide are produced by PyNGL and taken from their web site.
 See http://www.pyngl.ucar.edu/Examples/gallery.shtml for code.



Example of visualization and delivery of weather 
maps of NWP model results

 Screenshots taken from the WxMAP2 package web site.
 http://sourceforge.net/projects/wxmap2/



Example of analysis and visualization:  
Provenance management

http://www.vistrails.org/index.php?title=File:Corie_example.png&oldid=616

Session of the VisTrails visualization and data workflow and 
provenance management system; salinity data in the Columbia River 
estuary is graphed.



Example of analysis, visualization, and workflow 
management and integration

 Problem:  Many different components of the Applied Climate Information 
System:  Data ingest, distribution, storage, analysis, web services.

 Solution:  Do it all in Python:  A single environment of shared state vs. a 
crazy mix of shell scripts, compiled code, Matlab/IDL scripts, and web 
server makes for a more powerful, flexible, and maintainable system.

Image from:  AMS talk by Bill Noon, Northwest Regional Climate Center, Ithaca, NY, 
http://ams.confex.com/ams/91Annual/flvgateway.cgi/id/17853?recordingid=17853
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Python tools for data analysis:  Topics
We will look at only one tool (the Climate Data Analysis 
Tools or CDAT) and a few aspects of how that tool helps 
us with data analysis:
 What is CDAT?
 Dealing with missing data:  Masked arrays and 

variables.
 Comparing different datasets:  Time axis alignment.
 Dealing with different grids:  Vertical interpolation, 

regridding.
 What is VCDAT?
 A walk through simple analysis using VCDAT.



What is CDAT?
 Written by LLNL PCMDI and designed for climate science 

data, CDAT was first released in 1997.
 Unified environment based on the object-oriented Python 

computer language.
 Integrated with packages that are useful to the 

atmospheric sciences community:
 Climate Data Management System (cdms).
 NumPy, masked array (ma), masked variable (MV2)
 Visualization (vcs, Xmgrace, matplotlib, VTK, Visus, etc.
 And more! (i.e., OPeNDAP, ESG, etc.).

 Graphical user interface (VCDAT).
 XML representation (CDML/NcML) for data sets.
 Community software (BSD open source license).
 URL:  http://www-pcmdi.llnl.gov/software-portal.



Dealing with missing data:  Why masked 
arrays and masked variables?
 Python supports array variables (via NumPy).
 All variables in Python are not technically variables, 

but objects:
 Objects hold multiple pieces of data as well as functions that 

operate on that data.
 For AOS applications, this means data and metadata (e.g., 

grid type, missing values, etc.) can both be attached to the 
“variable.”

 Using this capability, we can define not only arrays, 
but two more array-like variables: masked arrays and 
masked variables.

 Metadata attached to the arrays can be used as part 
of analysis, visualization, etc.



What are masked arrays and masked 
variables?



How do masked arrays and masked 
variables look and act in Python?

>>> import numpy as N
>>> a = N.array([[1,2,3],[4,5,6]]) 
>>> a
array([[1, 2, 3],
       [4, 5, 6]])

>>> import numpy.ma as ma
>>> b = ma.masked_greater(a, 4)
>>> b
masked_array(data =
 [[1 2 3]
 [4 ­­ ­­]],
             mask =
 [[False False False]
 [False  True  True]],
       fill_value = 999999)
>>> print a*b
[[1 4 9]
 [16 ­­ ­­]]

Masked arrays:  A mask 
of bad values travels 
with the array.  Those 
elements deemed bad 
are treated as if they did 
not exist.  Operations 
using the array 
automatically utilize the 
mask of bad values.

Arrays:  Every element 
has a value, and 
operations using the 
array are defined 
accordingly.



How do masked arrays and masked 
variables look in Python (cont.)?

>>> import MV2
>>> d = MV2.masked_greater(c,4)
>>> d.info()
*** Description of Slab variable_3 ***
id: variable_3
shape: (3, 2)
filename: 
missing_value: 1e+20
comments: 
grid_name: N/A
grid_type: N/A
time_statistic: 
long_name: 
units: 
No grid present.
** Dimension 1 **
   id: axis_0
   Length: 3
   First:  0.0
   Last:   2.0
   Python id:  0x2729450
[... rest of output deleted for space ...]

Additional 
info such as: 

Metadata

Axes



Comparing different datasets:  Time axis 
alignment

 Different datasets and model runs can have ways of specifying 
time, e.g., different:
 Calendars:  Gregorian, Julian, 360 days/year, etc.
 Starting points:  Since 1 B.C./A.D. 1, since Jan 1, 1970, etc.

 CDAT time axis values can be referenced in two ways:
 Relative time:  A number relative to a datum (e.g., 10 months since 

Jan 1, 1970).
 Component time:  A date on a specific calendar (e.g., 1970-10-01).

 If t is your time axis (via getTime):
 To change to the same relative time datum, e.g.:

t.toRelativeTime('months since 1800­01­01')
 To change to component time based on a specified calendar, e.g.:

t.asComponentTime(calendar=cdtime.DefaultCalendar)
 From there, you can subset either on the basis of the same 

relative time values or for a given component time date.



Dealing with different grids
 Vertical interpolation:

P = cdutil.vertical.reconstructPressureFromHybrid(Ps, 
A, B, P0)
P = cdutil.vertical.linearInterpolation(var, depth, 
levels)
P = cdutil.vertical.logLinearInterpolation(var, 
depth, levels)

 Vertical regridding:  Use the MV2 pressureRegrid method:
var_on_new_levels = var.pressureRegrid(levout)

 Horizontal regridding:  Create a grid, then use the MV2 
regridding method to create a variable on the new grid.  
E.g., from a rectangular grid to a 96x192 rectangular 
Gaussian grid:
var = f(’temp’)
n48_grid = cdms2.createGaussianGrid(96)
var48 = var.regrid(n48_grid)



What is VCDAT?

VCDAT lets you get 
familiar with many 
parts of CDAT without 
learning Python.

The executable is 
named vcdat and is 
found in
/opt/cdat/bin.

Dimension 
selection and 
manipulation

Variable and 
graphics 
selection and 
manipulation

Variable 
selection

Dean Williams and Charles Doutriaux (LLNL PCMDI)



A walk through simple analysis using 
VCDAT
 Reading in data (local and remote)
 Selecting a variable
 Selecting axis ranges
 Plotting a longitude-latitude slice
 Plotting a time-longitude slice
 Plotting time vs. a regional average
 Basic calculations using data (defined 

variables)
 Saving a plot
 As a tool for teaching CDAT and Python
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Traditional AOS model coding techniques 
and tools
 Written in compiled languages (often Fortran):

 Pros:  Fast, "standard," free, many well-tested libraries.
 Cons:  Natively procedural, limited data structures (related 

data are not related to each other), non-interactive, portability 
issues (F90 standard does not specify memory allocation for 
non-standard data structures and each compiler implements 
different features differently).

 Language choice affects development cycle.
 Interfacing with operating system often unwieldy, 

through shell scripts, makefiles, etc.
 Substantial amounts of very old legacy code.
 Parallelization requires the climate scientist to deal 

with processor and memory management (MPI) 
issues.



Traditional practices yield problematic and 
unmodular code
 Brittle:  Errors and collisions are common.
 Difficult for other users (even yourself a few 

months/years later!) to understand.
 Difficult to extend:  Interfaces are poorly defined and 

structured between:
 Submodels (e.g., between atmosphere and ocean)
 Subroutines/procedures in a model
 Models and the operating system
 Models and the user (in terms of the user's thinking 

processes)
 Non-portable:  Difficult for models and sub-models to 

talk to one another, sometimes even on the same 
platform.



Capabilities of Python to help modularize 
models
 Object-orientation:  Makes it easier to develop robust and multi-

application interfaces between tools, and, in theory, more closely 
approximate human mental representations of the world.

 Interpreted and dynamically-typed:  Enables run time alteration 
of variables, as well as the reuse of code in multiple contexts 
(e.g., c=a*b works properly in a routine without change 
regardless of what type, size, and rank a and b are).

 Shared state:  You can access virtually all variables.  Note this is 
not some sort of giant common block, because namespace 
management and object decomposition automatically protect 
from collisions and accidental overwriting.

 Built-in set/collection data structures (i.e., lists, dictionaries) 
greatly improve the flexibility of the code.

 Clarity of syntax:  Code is more robust and modules developed 
for different applications can be more easily reused.



Example of modularizing a model with 
Python:  The qtcm atmospheric model
 Originally there was QTCM1, the Neelin-Zeng Quasi-

Equilibrium Tropical Circulation Model (Neelin & Zeng 
1999 and Zeng et al. 1999).

 Intermediate-level atmospheric model
 Written in Fortran.
 Vertical temperature and moisture profiles based 

upon convective quasi-equilibrium assumption.
 Resolution 5.625 deg longitude, 3.75 deg latitude.
 Includes a simple radiative code and a Betts-Miller 

(1986) type convective scheme.
 Reasonable simulation of tropical climatology and also 

includes Madden-Julian oscillation (MJO)-like 
variability.



The qtcm atmospheric model (cont.)

 qtcm is a Python wrapping of QTCM1:
 Fortran:  Numerics of QTCM1.
 Python:  User-interface wrapper that manages 

variables, routine execution order, runs, and model 
instances.

 Connectivity:  Through the program f2py:
 Almost automatically makes the Fortran routines and 

memory space available to Python.
 You can set Fortran variables at the Python level, even 

at run time.
 http://www.geosci-model-dev.net/2/1/2009/gmd-2-1-

2009.html



qtcm features:  A simple qtcm run
from qtcm import Qtcm
inputs = {}
inputs['runname'] = 'test'
inputs['landon'] = 0
inputs['year0'] = 1
inputs['month0'] = 11
inputs['day0'] = 1
inputs['lastday'] = 30
inputs['mrestart'] = 0
inputs['compiled_form'] = 'parts'
model = Qtcm(**inputs)
model.run_session()

Configuration keywords in this 
run yield:
 The output filenames will 

contain the string given by 
runname.

 Aquaplanet (set by landon).
 Start from Nov 1, Year 1.  

Run for 30 days.
 Start from a newly initialized 

model state.

Run the model using the 
run_session method.

compiled_form keyword 
chooses the model version that 
gives control down to the 
atmospheric timestep. 



qtcm features:  Run sessions and a 
continuation run in qtcm
inputs['year0'] = 1
inputs['month0'] = 11
inputs['day0'] = 1
inputs['lastday'] = 10
inputs['mrestart'] = 0
inputs['compiled_form'] = 'parts'

model = Qtcm(**inputs)
model.run_session()
model.u1.value = model.u1.value * 2.0
model.init_with_instance_state = True
model.run_session(cont=30)

 One run session is conducted with the model instance.
 The value of u1, the baroclinic zonal wind, is doubled.
 A continuation run is made for 30 more days.
 All this can be controlled at runtime, and interactively.



qtcm features:  Multiple qtcm model runs 
using a snapshot from a previous run 
session
model.run_session()
mysnapshot = model.snapshot

model1.sync_set_py_values_to_snapshot(snapshot=mysnapshot)
model2.sync_set_py_values_to_snapshot(snapshot=mysnapshot)
model1.run_session()
model2.run_session()

 Snapshots are variables (dictionary objects) that act as 
restart files.

 model1 and model2 are separate instances of the 
Qtcm class and are truly independent (they share no 
variables or memory).

 Again, objects enable us to control model configuration 
and execution in a clear but powerful way.



qtcm features:  Runlists make the model 
very modular
>>> model = Qtcm(compiled form=’parts’)
>>> print model.runlists[’qtcminit’] 
['__qtcm.wrapcall.wparinit’, 
’__qtcm.wrapcall.wbndinit’, ’varinit’, 
{’__qtcm.wrapcall.wtimemanager’: [1]}, ’atm physics1’] 

 Runlists specify a series of Python or Fortran methods, 
functions, subroutines (or other run lists) that will be executed 
when the list is passed into a call of the run_list method.

 Routines in run lists are identified by strings (instead of, for 
instance, as a memory pointer to a library archive object file) and 
so what routines the model executes are fully changeable at 
run time.

 The example shows a list with two Fortran subroutines without 
input parameters, a Python method without input parameters, a 
Fortran subroutine with an input parameter, and another run list.



 The object decomposition provides a high level of flexibility 
for changing i/o, data, variables, subroutine execution order, 
and the routines themselves at run time.

 The performance penalty of this hybrid-languge model vs. 
the Fortran-only version of the model is 4–9%.

 But for this cost, modeling is now no longer a static exercise 
(i.e., set parameters, run, analyze output).

 With modeling more dynamic, the modeling study can adapt 
and change as the model runs.

 This means that we can unify not only the traditionally 
computer-controlled portions of a modeling workflow, but 
also parts of the traditionally human-controlled portions 
(hypothesis generation).

qtcm benefits:  Improving the modeling and 
analysis cycle for climate modeling studies



qtcm benefits:  Improving the modeling and 
analysis cycle for climate modeling studies (cont.)

Transformed analysis sequence using qtcm-like tools:

Traditional analysis sequence used in modeling studies:

Outlined arrows = mainly human input.  Gray-filled arrows = a mix of human and 
computer-controlled input.  Completely filled (black)-arrows = purely computer-
controlled input.

Model output analysis can now automatically control future model runs.  Try 
doing that with a kludge of shell scripts, pre-processors, Matlab scripts, etc.!



qtcm benefits:  Modeling can be interactive

 Because Python is interpreted, this permits model alteration at run time 
and thus interactive modeling.  All variables can be changed at run 
time and in the model run.

 Visualization can also be done interactively.



Conclusions
 Python is a mature, comprehensive 

computational environment for all aspects 
of the atmospheric and oceanic sciences.

 AOS Python tools make data analysis 
much easier to do.

 Python offers tools to make models more 
flexible and capable of exploring previously 
difficult to access scientific problems.

 And it's (mostly) all free!


