
Using Python in Climate
and Meteorology

Johnny Wei-Bing Lin
Physics Department, North Park University

www.johnny-lin.com

Acknowledgments: Many of the CDAT-related slides are copied or adapted
from a set by Dean Williams and Charles Doutriaux (LLNL PCMDI). Thanks
also to the online CDAT documentation, Peter Caldwell (LLNL), and Alex
DeCaria (Millersville Univ.).

Slides version date: June 20, 2011. Author email: johnny@johnny-lin.com. Presented
at National Taiwan University, Taipei, Taiwan. This work is licensed under a Creative
Commons Attribution-NonCommercial-ShareAlike 3.0 United States License.

Outline
 Why Python?
 Python tools for data analysis: CDAT.
 Using Python to make models more

modular: The qtcm example.

Why Python?: Topics
 What is Python?
 Advantages and disadvantages.
 Why Python is now gaining momentum in

the atmospheric-oceanic sciences (AOS)
community.

 Examples of how Python is used as an
analysis, visualization, and workflow
management tool.

What is Python?
 Structure: Is a scripting, procedural, as well

as a fully native object-oriented (O-O)
language.

 Interpreted: Loosely/dynamically-typed and
interactive.

 Data structures: Robust built-in set and users
are free to define additional structures.

 Array syntax: Similar to Matlab, IDL, and
Fortran 90 (no loops!).

 Platform independent, open-source, and free!

Python's advantages
 Concise but natural syntax, both arrays and non-arrays,

makes programs clearer. “Python is executable
pseudocode. Perl is executable line noise.”

 Interpreted language makes development easier.
 Object-orientation makes code more robust/less brittle.
 Built-in set of data structures are very powerful and useful

(e.g., dictionaries).
 Namespace management which prevents variable and

function collisions.
 Tight interconnects with compiled languages (Fortran via

f2py and C via SWIG), so you can interact with compiled
code when speed is vital.

 Large user and developer base in industry as well as
science (e.g., Google, LLNL PCMDI).

Python's disadvantages
 Runs much slower than compiled code (but there are tools

to overcome this).
 Relatively sparse collection of scientific libraries compared

to Fortran (but this is growing).

Why AOS Python is now gaining momentum
 Python as a language was developed in the late 1980s, but even as late

as 2004, could be considered relatively “esoteric.”
 But by 2005, Python made a quantum jump in popularity, and has

continued to grow.
 Now is ranked 8th in the June 2011 TIOBE Programming Community

Index (which indicates the “popularity” of languages). Fortran is ranked
33rd, Matlab 23rd, and IDL is in the undifferentiated 50-100th group.

http://www.paulgraham.com/pypar.html, http://www.tiobe.com/index.php/paperinfo/tpci/Python.html

Why AOS Python is now gaining momentum (cont.)

 Around the same time, key tools for AOS use became
available:
 In 2005, NumPy was developed which (finally) provided a

standard array package.
 SciPy was begun in 2001 and incorporated NumPy to create

a one-stop shop for scientific computing.
 CDAT 3.3 was released in 2002, which proved to be the

version that really took off (the current version is 5.2).
 PyNGL and PyNIO were developed in 2004 and 2005,

respectively.
 matplotlib added a contouring package in the mid-2000's.

http://www.scipy.org/History_of_SciPy
http://www.pyngl.ucar.edu/Images/history.png

Why AOS Python is now gaining momentum (cont.)

 Institutional support in the AOS community now includes:
 Lawrence Livermore National Laboratory's Program for

Climate Model Diagnosis and Intercomparison (LLNL
PCMDI) produces CDAT, etc.

 National Center for Atmospheric Research Computational
and Information Systems Laboratory (NCAR CISL) produces
PyNGL and PyNIO.

 Center for Ocean-Land-Atmosphere Studies/Institute of
Global Environment and Society (COLA/IGES) produces
PyGrADS.

 American Meteorological Society (AMS): Sponsored an
Advances in Using Python symposium at the 2011 AMS
Annual Meeting (the symposia will reprise in 2012) as well as
a Python short course.

 AOS Python users can now be found practically anywhere.
 An overview of AOS Python resources is found at the

PyAOS website: http://pyaos.johnny-lin.com.

Example of visualization: Skew-T and
meteograms

 All plots on this slide are produced by PyNGL and taken from their web site.
 See http://www.pyngl.ucar.edu/Examples/gallery.shtml for code.

Example of visualization and delivery of weather
maps of NWP model results

 Screenshots taken from the WxMAP2 package web site.
 http://sourceforge.net/projects/wxmap2/

Example of analysis and visualization:
Provenance management

http://www.vistrails.org/index.php?title=File:Corie_example.png&oldid=616

Session of the VisTrails visualization and data workflow and
provenance management system; salinity data in the Columbia River
estuary is graphed.

Example of analysis, visualization, and workflow
management and integration

 Problem: Many different components of the Applied Climate Information
System: Data ingest, distribution, storage, analysis, web services.

 Solution: Do it all in Python: A single environment of shared state vs. a
crazy mix of shell scripts, compiled code, Matlab/IDL scripts, and web
server makes for a more powerful, flexible, and maintainable system.

Image from: AMS talk by Bill Noon, Northwest Regional Climate Center, Ithaca, NY,
http://ams.confex.com/ams/91Annual/flvgateway.cgi/id/17853?recordingid=17853

Outline
 Why Python?
 Python tools for data analysis: CDAT.
 Using Python to make models more

modular: The qtcm example.

Python tools for data analysis: Topics
We will look at only one tool (the Climate Data Analysis
Tools or CDAT) and a few aspects of how that tool helps
us with data analysis:
 What is CDAT?
 Dealing with missing data: Masked arrays and

variables.
 Comparing different datasets: Time axis alignment.
 Dealing with different grids: Vertical interpolation,

regridding.
 What is VCDAT?
 A walk through simple analysis using VCDAT.

What is CDAT?
 Written by LLNL PCMDI and designed for climate science

data, CDAT was first released in 1997.
 Unified environment based on the object-oriented Python

computer language.
 Integrated with packages that are useful to the

atmospheric sciences community:
 Climate Data Management System (cdms).
 NumPy, masked array (ma), masked variable (MV2)
 Visualization (vcs, Xmgrace, matplotlib, VTK, Visus, etc.
 And more! (i.e., OPeNDAP, ESG, etc.).

 Graphical user interface (VCDAT).
 XML representation (CDML/NcML) for data sets.
 Community software (BSD open source license).
 URL: http://www-pcmdi.llnl.gov/software-portal.

Dealing with missing data: Why masked
arrays and masked variables?
 Python supports array variables (via NumPy).
 All variables in Python are not technically variables,

but objects:
 Objects hold multiple pieces of data as well as functions that

operate on that data.
 For AOS applications, this means data and metadata (e.g.,

grid type, missing values, etc.) can both be attached to the
“variable.”

 Using this capability, we can define not only arrays,
but two more array-like variables: masked arrays and
masked variables.

 Metadata attached to the arrays can be used as part
of analysis, visualization, etc.

What are masked arrays and masked
variables?

How do masked arrays and masked
variables look and act in Python?

>>> import numpy as N
>>> a = N.array([[1,2,3],[4,5,6]])
>>> a
array([[1, 2, 3],
 [4, 5, 6]])

>>> import numpy.ma as ma
>>> b = ma.masked_greater(a, 4)
>>> b
masked_array(data =
 [[1 2 3]
 [4 ­­ ­­]],
 mask =
 [[False False False]
 [False True True]],
 fill_value = 999999)
>>> print a*b
[[1 4 9]
 [16 ­­ ­­]]

Masked arrays: A mask
of bad values travels
with the array. Those
elements deemed bad
are treated as if they did
not exist. Operations
using the array
automatically utilize the
mask of bad values.

Arrays: Every element
has a value, and
operations using the
array are defined
accordingly.

How do masked arrays and masked
variables look in Python (cont.)?

>>> import MV2
>>> d = MV2.masked_greater(c,4)
>>> d.info()
*** Description of Slab variable_3 ***
id: variable_3
shape: (3, 2)
filename:
missing_value: 1e+20
comments:
grid_name: N/A
grid_type: N/A
time_statistic:
long_name:
units:
No grid present.
** Dimension 1 **
 id: axis_0
 Length: 3
 First: 0.0
 Last: 2.0
 Python id: 0x2729450
[... rest of output deleted for space ...]

Additional
info such as:

Metadata

Axes

Comparing different datasets: Time axis
alignment

 Different datasets and model runs can have ways of specifying
time, e.g., different:
 Calendars: Gregorian, Julian, 360 days/year, etc.
 Starting points: Since 1 B.C./A.D. 1, since Jan 1, 1970, etc.

 CDAT time axis values can be referenced in two ways:
 Relative time: A number relative to a datum (e.g., 10 months since

Jan 1, 1970).
 Component time: A date on a specific calendar (e.g., 1970-10-01).

 If t is your time axis (via getTime):
 To change to the same relative time datum, e.g.:

t.toRelativeTime('months since 1800­01­01')
 To change to component time based on a specified calendar, e.g.:

t.asComponentTime(calendar=cdtime.DefaultCalendar)
 From there, you can subset either on the basis of the same

relative time values or for a given component time date.

Dealing with different grids
 Vertical interpolation:

P = cdutil.vertical.reconstructPressureFromHybrid(Ps,
A, B, P0)
P = cdutil.vertical.linearInterpolation(var, depth,
levels)
P = cdutil.vertical.logLinearInterpolation(var,
depth, levels)

 Vertical regridding: Use the MV2 pressureRegrid method:
var_on_new_levels = var.pressureRegrid(levout)

 Horizontal regridding: Create a grid, then use the MV2
regridding method to create a variable on the new grid.
E.g., from a rectangular grid to a 96x192 rectangular
Gaussian grid:
var = f(’temp’)
n48_grid = cdms2.createGaussianGrid(96)
var48 = var.regrid(n48_grid)

What is VCDAT?

VCDAT lets you get
familiar with many
parts of CDAT without
learning Python.

The executable is
named vcdat and is
found in
/opt/cdat/bin.

Dimension
selection and
manipulation

Variable and
graphics
selection and
manipulation

Variable
selection

Dean Williams and Charles Doutriaux (LLNL PCMDI)

A walk through simple analysis using
VCDAT
 Reading in data (local and remote)
 Selecting a variable
 Selecting axis ranges
 Plotting a longitude-latitude slice
 Plotting a time-longitude slice
 Plotting time vs. a regional average
 Basic calculations using data (defined

variables)
 Saving a plot
 As a tool for teaching CDAT and Python

Outline
 Why Python?
 Python tools for data analysis: CDAT.
 Using Python to make models more

modular: The qtcm example.

Traditional AOS model coding techniques
and tools
 Written in compiled languages (often Fortran):

 Pros: Fast, "standard," free, many well-tested libraries.
 Cons: Natively procedural, limited data structures (related

data are not related to each other), non-interactive, portability
issues (F90 standard does not specify memory allocation for
non-standard data structures and each compiler implements
different features differently).

 Language choice affects development cycle.
 Interfacing with operating system often unwieldy,

through shell scripts, makefiles, etc.
 Substantial amounts of very old legacy code.
 Parallelization requires the climate scientist to deal

with processor and memory management (MPI)
issues.

Traditional practices yield problematic and
unmodular code
 Brittle: Errors and collisions are common.
 Difficult for other users (even yourself a few

months/years later!) to understand.
 Difficult to extend: Interfaces are poorly defined and

structured between:
 Submodels (e.g., between atmosphere and ocean)
 Subroutines/procedures in a model
 Models and the operating system
 Models and the user (in terms of the user's thinking

processes)
 Non-portable: Difficult for models and sub-models to

talk to one another, sometimes even on the same
platform.

Capabilities of Python to help modularize
models
 Object-orientation: Makes it easier to develop robust and multi-

application interfaces between tools, and, in theory, more closely
approximate human mental representations of the world.

 Interpreted and dynamically-typed: Enables run time alteration
of variables, as well as the reuse of code in multiple contexts
(e.g., c=a*b works properly in a routine without change
regardless of what type, size, and rank a and b are).

 Shared state: You can access virtually all variables. Note this is
not some sort of giant common block, because namespace
management and object decomposition automatically protect
from collisions and accidental overwriting.

 Built-in set/collection data structures (i.e., lists, dictionaries)
greatly improve the flexibility of the code.

 Clarity of syntax: Code is more robust and modules developed
for different applications can be more easily reused.

Example of modularizing a model with
Python: The qtcm atmospheric model
 Originally there was QTCM1, the Neelin-Zeng Quasi-

Equilibrium Tropical Circulation Model (Neelin & Zeng
1999 and Zeng et al. 1999).

 Intermediate-level atmospheric model
 Written in Fortran.
 Vertical temperature and moisture profiles based

upon convective quasi-equilibrium assumption.
 Resolution 5.625 deg longitude, 3.75 deg latitude.
 Includes a simple radiative code and a Betts-Miller

(1986) type convective scheme.
 Reasonable simulation of tropical climatology and also

includes Madden-Julian oscillation (MJO)-like
variability.

The qtcm atmospheric model (cont.)

 qtcm is a Python wrapping of QTCM1:
 Fortran: Numerics of QTCM1.
 Python: User-interface wrapper that manages

variables, routine execution order, runs, and model
instances.

 Connectivity: Through the program f2py:
 Almost automatically makes the Fortran routines and

memory space available to Python.
 You can set Fortran variables at the Python level, even

at run time.
 http://www.geosci-model-dev.net/2/1/2009/gmd-2-1-

2009.html

qtcm features: A simple qtcm run
from qtcm import Qtcm
inputs = {}
inputs['runname'] = 'test'
inputs['landon'] = 0
inputs['year0'] = 1
inputs['month0'] = 11
inputs['day0'] = 1
inputs['lastday'] = 30
inputs['mrestart'] = 0
inputs['compiled_form'] = 'parts'
model = Qtcm(**inputs)
model.run_session()

Configuration keywords in this
run yield:
 The output filenames will

contain the string given by
runname.

 Aquaplanet (set by landon).
 Start from Nov 1, Year 1.

Run for 30 days.
 Start from a newly initialized

model state.

Run the model using the
run_session method.

compiled_form keyword
chooses the model version that
gives control down to the
atmospheric timestep.

qtcm features: Run sessions and a
continuation run in qtcm
inputs['year0'] = 1
inputs['month0'] = 11
inputs['day0'] = 1
inputs['lastday'] = 10
inputs['mrestart'] = 0
inputs['compiled_form'] = 'parts'

model = Qtcm(**inputs)
model.run_session()
model.u1.value = model.u1.value * 2.0
model.init_with_instance_state = True
model.run_session(cont=30)

 One run session is conducted with the model instance.
 The value of u1, the baroclinic zonal wind, is doubled.
 A continuation run is made for 30 more days.
 All this can be controlled at runtime, and interactively.

qtcm features: Multiple qtcm model runs
using a snapshot from a previous run
session
model.run_session()
mysnapshot = model.snapshot

model1.sync_set_py_values_to_snapshot(snapshot=mysnapshot)
model2.sync_set_py_values_to_snapshot(snapshot=mysnapshot)
model1.run_session()
model2.run_session()

 Snapshots are variables (dictionary objects) that act as
restart files.

 model1 and model2 are separate instances of the
Qtcm class and are truly independent (they share no
variables or memory).

 Again, objects enable us to control model configuration
and execution in a clear but powerful way.

qtcm features: Runlists make the model
very modular
>>> model = Qtcm(compiled form=’parts’)
>>> print model.runlists[’qtcminit’]
['__qtcm.wrapcall.wparinit’,
’__qtcm.wrapcall.wbndinit’, ’varinit’,
{’__qtcm.wrapcall.wtimemanager’: [1]}, ’atm physics1’]

 Runlists specify a series of Python or Fortran methods,
functions, subroutines (or other run lists) that will be executed
when the list is passed into a call of the run_list method.

 Routines in run lists are identified by strings (instead of, for
instance, as a memory pointer to a library archive object file) and
so what routines the model executes are fully changeable at
run time.

 The example shows a list with two Fortran subroutines without
input parameters, a Python method without input parameters, a
Fortran subroutine with an input parameter, and another run list.

 The object decomposition provides a high level of flexibility
for changing i/o, data, variables, subroutine execution order,
and the routines themselves at run time.

 The performance penalty of this hybrid-languge model vs.
the Fortran-only version of the model is 4–9%.

 But for this cost, modeling is now no longer a static exercise
(i.e., set parameters, run, analyze output).

 With modeling more dynamic, the modeling study can adapt
and change as the model runs.

 This means that we can unify not only the traditionally
computer-controlled portions of a modeling workflow, but
also parts of the traditionally human-controlled portions
(hypothesis generation).

qtcm benefits: Improving the modeling and
analysis cycle for climate modeling studies

qtcm benefits: Improving the modeling and
analysis cycle for climate modeling studies (cont.)

Transformed analysis sequence using qtcm-like tools:

Traditional analysis sequence used in modeling studies:

Outlined arrows = mainly human input. Gray-filled arrows = a mix of human and
computer-controlled input. Completely filled (black)-arrows = purely computer-
controlled input.

Model output analysis can now automatically control future model runs. Try
doing that with a kludge of shell scripts, pre-processors, Matlab scripts, etc.!

qtcm benefits: Modeling can be interactive

 Because Python is interpreted, this permits model alteration at run time
and thus interactive modeling. All variables can be changed at run
time and in the model run.

 Visualization can also be done interactively.

Conclusions
 Python is a mature, comprehensive

computational environment for all aspects
of the atmospheric and oceanic sciences.

 AOS Python tools make data analysis
much easier to do.

 Python offers tools to make models more
flexible and capable of exploring previously
difficult to access scientific problems.

 And it's (mostly) all free!

