Using Python in Climate
and Meteorology

Johnny Wei-Bing Lin
Physics Department, North Park University
www.johnny-lin.com
Acknowledgments: Many of the CDAT-related slides are copied or adapted

from a set by Dean Williams and Charles Doutriaux (LLNL PCMDI). Thanks

also to the online CDAT documentation, Peter Caldwell (LLNL), and Alex
DeCaria (Millersville Univ.).

Lives of Significance and Service

NORTH PARK

) 2 TDC :
UN[\' EF\\I I y Slides version date: June 20, 2011. Author email: johnny@johnny-lin.com. Presented

CHICAGO at National Taiwan University, Taipei, Taiwan. This work is licensed under a Creative
Commons Attribution-NonCommercial-ShareAlike 3.0 United States License.

Outline

0O Why Python?
O Python tools for data analysis: CDAT.

0 Using Python to make models more
modular: The gtcm example.

Why Python?: Topics

O

What is Python?
Advantages and disadvantages.

Why Python is now gaining momentum in
the atmospheric-oceanic sciences (AOS)
community.

Examples of how Python is used as an
analysis, visualization, and workflow
management tool.

What is Python?

O

Structure: Is a scripting, procedural, as well
as a fully native object-oriented (O-O)
language.

Interpreted: Loosely/dynamically-typed and
Interactive.

Data structures: Robust built-in set and users
are free to define additional structures.

Array syntax: Similar to Matlab, IDL, and
Fortran 90 (no loops!).

Platform independent, open-source, and free!

Python's advantages

0 Concise but natural syntax, both arrays and non-arrays,
makes programs clearer. “Python is executable
pseudocode. Perl is executable line noise.”

O Interpreted language makes development easier.
O QObject-orientation makes code more robust/less brittle.

O Built-in set of data structures are very powerful and useful
(e.g., dictionaries).

0O Namespace management which prevents variable and
function collisions.

O Tight interconnects with compiled languages (Fortran via
f2py and C via SWIG), so you can interact with compiled
code when speed is vital.

O Large user and developer base in industry as well as
science (e.g., Google, LLNL PCMDI).

Python's disadvantages

O Runs much slower than compiled code (but there are tools
to overcome this).

O Relatively sparse collection of scientific libraries compared
to Fortran (but this is growing).

Why AOS Python is now gaining momentum

0O Python as a language was developed in the late 1980s, but even as late
as 2004, could be considered relatively “esoteric.”

O But by 2005, Python made a quantum jump in popularity, and has
continued to grow.

O Now is ranked 8" in the June 2011 TIOBE Programming Community
Index (which indicates the “popularity” of languages). Fortran is ranked
33", Matlab 23", and IDL is in the undifferentiated 50-100™ group.

TPCI History for language Python

Mormalized fraction of total hits (%)

2003 2004 2005 2006 2007 2008 2009
Time

http://www.paulgraham.com/pypar.html, http://www.tiobe.com/index.php/paperinfo/tpci/Python.html

Why AOS Python is now gaining momentum (cont.)

O Around the same time, key tools for AOS use became
available:

In 2005, NumPy was developed which (finally) provided a
standard array package.

SciPy was begun in 2001 and incorporated NumPy to create
a one-stop shop for scientific computing.

CDAT 3.3 was released in 2002, which proved to be the
version that really took off (the current version is 5.2).

PyNGL and PyNIO were developed in 2004 and 2005,
respectively.

matplotlib added a contouring package in the mid-2000's.

http://www.scipy.org/Histor?/_of_SciI?y
http://www.pyngl.ucar.edu/[mages/history.png

Why AOS Python is now gaining momentum (cont.)

O Institutional support in the AOS community now includes:

= Lawrence Livermore National Laboratory's Program for
Climate Model Diagnosis and Intercomparison (LLNL
PCMDI) produces CDAT, etc.

= National Center for Atmospheric Research Computational
and Information Systems Laboratory (NCAR CISL) produces
PyNGL and PyNIO.

= Center for Ocean-Land-Atmosphere Studies/Institute of

Global Environment and Society (COLA/IGES) produces
PyGrADS.

= American Meteorological Society (AMS): Sponsored an
Advances in Using Python symposium at the 2011 AMS
Annual Meeting (the symposia will reprise in 2012) as well as
a Python short course.

O AOS Python users can now be found practically anywhere.

O An overview of AOS Python resources is found at the
PyAOS website: http://pyaos.johnny-lin.com.

Example of visualization: Skew-T and
meteograms

. Raob; [Wind Reports] Meteogram for LGSA, 28/12Z
8 cl=928 Tlcl[C]=24 5 3 Pw 1]=5 Cape|J|= 4458 400
; AR NN 8 S S 20 LRSIV s s
i I s0) 7 e~
1111) e A A— = st
- as a0
E
850
“ g
0 925
7]
o
- 35 a 950
T 975
o[30
=3 1
= 1000 LA L] - '
g & = =)
L a \ ; . 2
e azzafsgsazaaisssasaafags
Lo [CONTOUR FROM -20 TO 60 BY 10]
5 040 -
"“ = 0.30 -
14 @ 020 -
' = 010 -
m | [:i & 0.00 -
- T L s 0 3 6 9 1215 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72
: -6
- 4 £ 64.0 =
L S 630 E
_g T 620 Z/ .
T T T T T T T g 2']):3 ;: . ;—f
20 0 20 40 60 80 100 ERoE L L v DA T T
Temperaturs (F) 0 3 6 9 121518212427 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72|

All plots on this slide are produced by PyNGL and taken from their web site.
See http://www.pyngl.ucar.edu/Examples/gallery.shtml for code.

Example of visualization and delivery of weather
maps of NWP model results

ESRL/GSD/AMB WxMAP2 - 2009111018

Mid-Lat CONUS

Traphoal WESTPALC

FiM | RN Lo |
Ll Vil
iR BED HHE

Tropical $10

U rrw Lo |
FiA | e viiees |

| vow | [Siseeleap |
WGP Vale
LKW | mso wec

WxMap & Model Lisks

WaHAR drchive | PRAL WaHAR | GED FIM WalsaPE, HE gy
FHHOC W aMAP DOLA WxMap NRL Cosmps TC NEL TC Page
WCEP Moded Werl EWC Model VEDE CIRA TC
HCEP COMY Oba WOIP Sure Obs RCEP SAT Obw CIMSS TC
FiU CyoPhatpe | FHMOC ObsCery WAL TE wwE
!.Tl:l'ﬂ_lq FNMDC TeTrik GTS TeTrk CPCTC
| _tcwwrTes | WESDLS QSeat

(o 720w | scowe 7i-n na | W T ac spic
[rcowr ons | uwowo ous TN

MHC/ITWC Tropical ADR Wing CEmatshogy

HPmndel TC Stat

Current Cime
CPC MIO Anim
CPC MID FCST

Manthly Clima
CPC MID Disc

WxHap MidLat-Mist Arsas

WGP WEBHUS NGP CONUS WGP Evanpe WGP Trophes
EFE WCONIS GFS CONUS GFS Burapa GFS ASIA GFS Trophio
MM WS LM CoMUS KM Eureps | UKM Trog Nis

500 ooy |

Created: 2009111100 0.03 h GFS:1018 FIM:1012 ECHM:1012 NGP:1012 UKM:1018

Hid-Lak EURDPE

TC & Trogical Links

ITWE Hame | ITWE TOO Red
FHMOC TC Page | 18K TC Page
CTRA,., | TroplANT Reon
omss.. |
USMSAT... | MESDIS S50 SAT.,
CPL... i
ASTAT Huring Sty

MF TC Act LLMA® | MF TC Act TS
M modiel TC b |

Tropicsl WESTPAC

Othar WxMap Tropscal Arsas
WGP Traphus
GFS TropDs

KM Trepaus

L |
2oy |

==
T T |
el - [[oo | e [
e e REES

ECMWF EP!

2008111112 Fpus 25

-

'S TC: 11L.2009 bdtg: 2009110700 Hit Count at T= 108
wakid dig: T 75 Mot 51

P

| v,
sy

e

s 30N

25K

He 2w

150

Screenshots taken from the WxMAP2 package web site.
http://sourceforge.net/projects/wxmap2/

Example of analysis and visualization:

Provenance management

@3 VisTrails Builder - corie.xml*

_(al |x m VisTrails - Spreadsheet - Untitled =48 | X
File Edit Wiew Run Vistal Help Main View
DldAdmy
Wodules corie.xml* a
Search | =
B e EmET L S 'Q 0 % I Pipeline | versionTree | Query | Parameter Exploration |
E VTK Methods =)
E Spreadsheet Search [
E Basic Modules
- Module s
£ Constant [} vtkCORIEURstructuredGridReader
i ‘Hodlean H -~ Newlnstance J’JL‘
) m SetFromLayer N
i) £ e - SetTimeStep 23.0
b String W SetVerticalScale 150
File :: SetverticalShit
Gl amnnun lug
- FileSink - B vtkUnstructuredGridReader 2w
StandardOutput i l- Newlnstance e
BT T o ame—— . e EeeEER El kaalaReader @ u.uy
Tage [Facore 2006-Jul-11 210000
TestTuple ogl | [«]¥] —_—
- ConcatenateString
e Properties
i _ spnesns &)
B ki SetTimeStep————————————————————
- Null)
T . :
e [-.
lnputPort | | Y m 15 o
OutputPort o SetVerticalShift i a0
3 . —
Subbludils el Float 0.0 3. 15.0
= HTTP) OO0000 i i i 100
= Matplotlib/pylab] I : :
3.00 .Uy
2006-Jul-11 21:00:00 2006-Jul-11 21:00:00
P i
roperties | Annctations Sheet1
4

Session of the VisTrails visualization and data workflow and
provenance mane(ljgement system; salinity data in the Columbia River
estuary is graphe

http://www.vistrails.org/index.php?title=File:Corie_example.png&oldid=616

Example of analysis, visualization, and workflow
management and integration

LR

5 i ACIS components

@ tables ol .

summaries NumPy

SciPy

Twisted .
. matplotlib
Cython

(=,
Twisted

psycopg2 nc h5py
Postgres MNetCDF HDF5S

0O Problem: Many different components of the Applied Climate Information
System: Data ingest, distribution, storage, analysis, web services.

O Solution: Do it all in Python: A single environment of shared state vs. a
crazy mix of shell scripts, compiled code, Matlab/IDL scripts, and web
server makes for a more powerful, flexible, and maintainable system.

Image from: AMS talk by Bill Noon, Northwest Regional Climate Center, Ithaca, NY,
http://ams.confex.com/ams/91Annual/flvgateway.cqi/id/17853?recordingid=17853

Outline

O

O Python tools for data analysis: CDAT.
O

Python tools for data analysis: Topics

We will look at only one tool (the Climate Data Analysis
Tools or CDAT) and a few aspects of how that tool helps
us with data analysis:

0O Whatis CDAT?

O Dealing with missing data: Masked arrays and
variables.

0O Comparing different datasets: Time axis alignment.

O Dealing with different grids: Vertical interpolation,
regridding.

0O Whatis VCDAT?

0O A walk through simple analysis using VCDAT.

What is CDAT?

O

O

O O 0O O

Written by LLNL PCMDI and designed for climate science
data, CDAT was first released in 1997.

Unified environment based on the object-oriented Python
computer language.

Integrated with packages that are useful to the
atmospheric sciences community:

= (Climate Data Management System (cdms).
= NumPy, masked array (ma), masked variable (MV2)
|

Visualization (vcs, Xmgrace, matplotlib, VTK, Visus, etc.
= And more! (i.e., OPeNDAP, ESG, etc.).

Graphical user interface (VCDAT).

XML representation (CDML/NcML) for data sets.
Community software (BSD open source license).
URL: http://www-pcmdi.llnl.gov/software-portal.

Dealing with missing data: Why masked
arrays and masked variables?

0O Python supports array variables (via NumPy).

O All variables in Python are not technically variables,
but objects:

= (Objects hold multiple pieces of data as well as functions that
operate on that data.

= For AOS applications, this means data and metadata (e.g.,
gnd type, m|ssmg values, etc.) can both be attached to the
“variable.”
O Using this capability, we can define not only arrays,
but two more array-like variables: masked arrays and
masked variables.

O Metadata attached to the arrays can be used as part
of analysis, visualization, etc.

What are masked arrays and masked
variables?

Arrays: array
(numpy)
array mask
Masked Arrays:
(numpy.ma) +
Masked Variables: array mask domain metadata

(MV2)
+ + + id, units, ...

How do masked arrays and masked
variables look and act in Python?

>>> import numpy as N
>>> a = N.array([[1,2,3]1,[4,5,6]1])
>>> a
array([[1l, 2, 3],
[4, 5, 6]])

>>> import numpy.ma as ma
>>> b = ma.masked greater(a, 4)
>>> b -
masked array(data =
[[1 2 3]

[4 -- -=11,
mask =
[[False False False]
[False True True]],
fill value = 999999)
>>> print a¥b

Arrays: Every element
has a value, and
operations using the
array are defined
accordingly.

Masked arrays: A mask
of bad values travels
with the array. Those
elements deemed bad
are treated as if they did
not exist. Operations
using the array
automatically utilize the
mask of bad values.

How do masked arrays and masked
variables look in Python (cont.)?

>>> import MV2
>>> d = MV2.masked greater(c,4)

" >>> d.info
Addltlonal * k% Descri]g()%ion of Slab variable 3 **%*
iInfo such as: 7 |id: variable 3 -
shape: (3, 2)
filename:
missing value: le+20
comments:
Metadata < grid name: N/A
grid type: N/A
time statistic:
long name:
units:
\.[No grid present.
** Dimension 1 **
id: axis 0

Length: 3
Axes First: 0.0
Last: 2.0

Python id: 0x2729450
[... rest of output deleted for space ...]

Comparing different datasets: Time axis
alignment

O Different datasets and model runs can have ways of specifying
time, e.g., different:

m Calendars: Gregorian, Julian, 360 days/year, etc.
m Starting points: Since 1 B.C./A.D. 1, since Jan 1, 1970, etc.
0O CDAT time axis values can be referenced in two ways:

= Relative time: A number relative to a datum (e.g., 10 months since
Jan 1, 1970).

= Component time: A date on a specific calendar (e.g., 1970-10-01).
O If £ is your time axis (via getTime):
= To change to the same relative time datum, e.g.:
t.toRelativeTime('months since 1800-01-01"')
= To change to component time based on a specified calendar, e.g.:
t.asComponentTime (calendar=cdtime.DefaultCalendar)

O From there, you can subset either on the basis of the same
relative time values or for a given component time date.

Dealing with different grids

O Vertical interpolation:

P = cdutil.vertical.reconstructPressureFromHybrid(Ps,
A, B, PO)

P = cdutil.vertical.linearInterpolation(var, depth,
levels)

P = cdutil.vertical.loglLinearInterpolation(var,
depth, levels)

O Vertical regridding: Use the MV2 pressureRegrid method:

var_on _new levels = var.pressureRegrid(levout)

O Horizontal regridding: Create a grid, then use the MV2
regridding method to create a variable on the new grid.
E.g., from a rectangular grid to a 96x192 rectangular
Gaussian grid:
var = f('temp’)
n4d8 grid = cdms2.createGaussianGrid(96)
var48 = var.regrid(n48 grid)

What is VCDAT?

VCDAT lets you get
familiar with many
parts of CDAT without
learning Python.

The executable is
named vedat and is
found in
/opt/cdat/bin.

\

r

Variable
selection

Dimension
selection and
manipulation

Variable and
graphics

selection and
manipulation

Dean Williams and Charles Doutriaux (LLNL PCMDI)

Elle Preferences Tools PCMDITools ben

Select Variable

Directory: @ % |/pcmdifamipfmo/tasfmedian—OZa

File or URL: |tas_median-02anc v E
Variable: 6[
- Boxfil VCS Canvas 1 aptions | Define |
Ztime 1979-1-18 1230:0.0 11996 v de
time 1979-1-16 1 1996-2-15 1
ST 90 : 90 by 1 ! v 4o
____—_J |atitude -90 90
T e v =
,.____,.__._j longitude i} 355
REZPRIXNREE |
Template Graphics Method Defined Variables Calculator
AP Select Boxfil: il (5 (208 &4, 2] | E?‘E] fo
AMIPDUD ASD -~
AMIFDUD_1of2 CMIP_so i
AMIPDUD_20f2 CMIP_sos 7@
=t e}
AMIF_1of2 CMIP_speedo
AMIP_2of2 CMIP_to ﬁﬁ%
ASD CMIP_tos L)
ASD CMIP_1vo %
ASD10 CMIP_zos XYY
ASD1 b_and_w
ASDA2 dafallt zy P
ASD13 molwd
ASD14 polar E
ASD15 quick 6xbs(u)
ASD1_of_2 robinson x
4301 _of_2_dud significance 0 Ln;%(y)
ASD1_of 3 4+ x|
ASD1_of_3_dud B
ASD1_of 4 Sin |Sin
ASDT of 4 dud a la
Page Layout Option
Remove Off Template Boxfil ALLY) P Canvas
@ [AsD £SO | 0 1

A walk through simple analysis using
VCDAT

Reading in data (local and remote)
Selecting a variable

Selecting axis ranges

Plotting a longitude-latitude slice
Plotting a time-longitude slice
Plotting time vs. a regional average

Basic calculations using data (defined
variables)

Saving a plot
As a tool for teaching CDAT and Python

O O 0O 0O O 0O O

O O

Outline

O
O

0 Using Python to make models more
modular: The gtcm example.

Traditional AOS model coding techniques
and tools

O Written in compiled languages (often Fortran):
= Pros: Fast, "standard,” free, many well-tested libraries.

= Cons: Natively procedural, limited data structures (related
data are not related to each other), non-interactive, portability
issues (F90 standard does not specify memory allocation for
non-standard data structures and each compiler implements
different features differently).

O Language choice affects development cycle.

O Interfacing with operating system often unwieldy,
through shell scripts, makefiles, etc.

O Substantial amounts of very old legacy code.

O Parallelization requires the climate scientist to deal
with processor and memory management (MPI)
ISSues.

Traditional practices yield problematic and
unmodular code

O Brittle: Errors and collisions are common.

0 Difficult for other users (even yourself a few
months/years later!) to understand.

O Difficult to extend: Interfaces are poorly defined and
structured between:
= Submodels (e.g., between atmosphere and ocean)
m Subroutines/procedures in a model
= Models and the operating system
|

Models and the user (in terms of the user's thinking
processes)

O Non-portable: Difficult for models and sub-models to
talk to one another, sometimes even on the same
platform.

Capabilities of Python to help modularize
models

0O Object-orientation: Makes it easier to develop robust and multi-
application interfaces between tools, and, in theory, more closely
approximate human mental representations of the world.

O Interpreted and dynamically-typed: Enables run time alteration
of variables, as well as the reuse of code in multiple contexts
(e.g., c=a*b works properly in a routine without change
regardless of what type, size, and rank a and b are).

O Shared state: You can access virtually all variables. Note this is
not some sort of giant common block, because namespace
management and object decomposition automatically protect
from collisions and accidental overwriting.

O Built-in set/collection data structures (i.e., lists, dictionaries)
greatly improve the flexibility of the code.

0O Clarity of syntax: Code is more robust and modules developed
for different applications can be more easily reused.

Example of modularizing a model with
Python: The gtcm atmospheric model

O Originally there was QTCM1, the Neelin-Zeng Quasi-
Equilibrium Tropical Circulation Model (Neelin & Zeng
1999 and Zeng et al. 1999).

O Intermediate-level atmospheric model
0O Written in Fortran.

0 Vertical temperature and moisture profiles based
upon convective quasi-equilibrium assumption.

O Resolution 5.625 deg longitude, 3.75 deg latitude.

O Includes a simple radiative code and a Betts-Miller
(1986) type convective scheme.

0O Reasonable simulation of tropical climatology and also
includes Madden-dJulian oscillation (MJO)-like
variability.

The gtcm atmospheric model (cont.)

O qgtcm is a Python wrapping of QTCM1:
= Fortran: Numerics of QTCM1.

= Python: User-interface wrapper that manages
yarlables, routine execution order, runs, and model
instances.

0O Connectivity: Through the program f2py:

= Almost automatically makes the Fortran routines and
memory space available to Python.

= You can set Fortran variables at the Python level, even
at run time.

O http://www.geosci-model-dev.net/2/1/2009/gmd-2-1-
2009.html

gtcm features: A simple gtcm run

from gtcm import Qtcm
inputs = {}
inputs['runname'] = 'test'
inputs['landon'] = 0
inputs['year0'] = 1
inputs['month0'] = 1
inputs['day0'] =1
inputs['lastday'] = 30
inputs['mrestart'] = 0

1

inputs['compiled form'] = 'parts'

model = Qtcm(**inputs)
model.run session()

Configuration keywords in this
run yield:

O The output filenames will
contain the string given by
runname.

Aquaplanet (set by 1landon).

Start from Nov 1, Year 1.
Run for 30 days.

O Start from a newly initialized
model state.

Run the model using the
run_session method.

compiled form keyword
chooses the model version that
gives control down to the
atmospheric timestep.

gtcm features: Run sessions and a
continuation run in gtcm

inputs['year0'] =1
inputs['month0'] = 11
inputs['day0'] =1
inputs['lastday'] = 10

inputs['mrestart'] = 0
inputs['compiled form'] = 'parts'

model = Qtcm(**inputs)

model.run session()

model.ul.value = model.ul.value * 2.0
model.init with instance state = True
model.run session(cont=30)

O One run session is conducted with the model instance.
O The value of ul, the baroclinic zonal wind, is doubled.
O A continuation run is made for 30 more days.

O All this can be controlled at runtime, and interactively.

gtcm features: Multiple gtcm model runs
using a snapshot from a previous run
session

model.run session()
mysnapshot = model.snapshot

modell.sync set py values to snapshot(snapshot=mysnapshot)
model2.sync set py values to snapshot(snapshot=mysnapshot)
modell.run session() -

model2.run_session()

O Snapshots are variables (dictionary objects) that act as
restart files.

O modell and model2 are separate instances of the
Qtcm class and are truly independent (they share no
variables or memory).

O Again, objects enable us to control model configuration
and execution Iin a clear but powerful way.

gtcm features: Runlists make the model
very modular

>>> model = Qtcm(compiled form='parts’)

>>> print model.runlists[’'qgtcminit’]
['__gtcm.wrapcall.wparinit’,

' "qtcm.wrapcall.wbndinit’, ‘varinit’,
{7__gtcm.wrapcall. wtlmemanager’: [1]}, 'atm physicsl’]

O Runlists specify a series of Python or Fortran methods,
functions, subroutines (or other run lists) that will be executed
when the list is passed into a call of the run_list method.

O Routines in run lists are identified by strings (instead of, for
instance, as a memory pointer to a library archive object file) and
so what routines the model executes are fully changeable at
run time.

O The example shows a list with two Fortran subroutines without
iInput parameters, a Python method without input parameters, a
Fortran subroutine with an input parameter, and another run list.

gtcm benefits: Improving the modeling and
analysis cycle for climate modeling studies

O

The object decomposition provides a high level of flexibility
for changing i/o, data, variables, subroutine execution order,
and the routines themselves at run time.

The performance penalty of this hybrid-languge model vs.
the Fortran-only version of the model is 4-9%.

But for this cost, modeling is now no longer a static exercise
(i.e., set parameters, run, analyze output).

With modeling more dynamic, the modeling study can adapt
and change as the model runs.

This means that we can unify not only the traditionally
computer-controlled portions of a modeling workflow, but
also parts of the traditionally human-controlled portions
(hypothesis generation).

gtcm benefits: Improving the modeling and
analysis cycle for climate modeling studies (cont.)

Traditional analysis sequence used in modeling studies:

Hypothesis |:>Cnde |:> Model Runs |:>Analysis
Q J «0 O

Transformed analysis sequence using gtcm-like tools:

More ;
[— > Code [— » Model Runs [—» Analysis
Hypothesis ‘ 'y
9 = 0

Outlined arrows = mainly human input. Gray-filled arrows = a mix of human and
computer-controlled input. Completely filled (black)-arrows = purely computer-
controlled input.

Model output analysis can now automatically control future model runs. Try
doing that with a kludge of shell scripts, pre-processors, Matlab scripts, etc.!

gtcm benefits: Modeling can be interactive

~
@ Grab File Edit Window Help 5 @ « [= 4) E= Wed5:01PM Johnny Lin
@00 Terminal — vim — 70x21 | aee ¥ gtem_w3bmUC.png (=]
import user, oz, utilities = o) [o) - ":4
from qtcm import Qtcm k-—&i o c’ A Y Py A Y u&

Drawer : Rotate Left Rotate Right Actual Size Zeom To Fit Zoom In Zoom Qut 64
rundirname = 'test’ =
dirbasepath = utilities.prepare_outdirg rundirnome) Precipitation [W/m?] -"
inputs = {} 300 - T T T
inputs[‘bnddir'] = os.path.join{ os.getawd(), ‘bnddir’, 'red4xz42') @
inputs['S5Tdir'] = os.path.jein{ os.getcwd(), ‘bnddir', ‘rodz42" i

'SST_Reynolds') 950 '-J
inputs[‘outdir'] = dirbasepath ﬂ
inputs[‘runname’] = rundirname i
inputs[‘yeard'] = 1 @
inputs[‘montha’] = 11 20 L LU
inputs[‘dayg'] = 1 £ s
inputs ‘lastday'] = 181 3 o
inputs[‘ntout'] = 1 £ 150 A
inputs[‘compiled_form'] = ‘full’ =z \

& ol
model = Qtom{**inputs) £ ‘_‘Q
model . run_sesswn(@ 100 ¥
Drawer 2 Rotate Left Rotate Right Actual Size Zoom To Fit Zoom In Zoom Qut ‘zr’;.

50
Y50 155 160 165 170 175 180
Model Time [Days Since 1-11-01] a
bilnlis
writeM: Writing mean data to “/scrol/testing/rundirdtest/gm_test.nc' jEiase

Oriwver: Running for 188 days ot model daote 89820429 X‘

writeM: Writing mean daota to “/scral/testingsrundir/tests/gm_test.nc" 4

Driwer: Running for 181 days at model date 88620436

Restart file written at end of 88026430

1 OTCM finished normally
[I5°E HE 135°E 180° 135 W wrW 45" W === model.plotm 'us', time=18@, tmppreview=True) \

== model.plotm('Prec’, lon=@., lat=1.875, time=[150,188], tmppreview=True) 9

|7 model.ul.value = model.ul.value * 2.8 :
""""""""""""""""""""""""""""""" |7 model.run_session{cont=30)(]

O Because Python is interpreted, this permits model alteration at run time
and thus interactive modeling. All variables can be changed at run
time and in the model run.

O Visualization can also be done interactively.

Conclusions

O Python is a mature, comprehensive
computational environment for all aspects
of the atmospheric and oceanic sciences.

0 AOS Python tools make data analysis
much easier to do.

O Python offers tools to make models more
flexible and capable of exploring previously
difficult to access scientific problems.

O And it's (mostly) all free!

