
A Python Implementation of the Neelin-Zeng
Quasi-Equilibrium Tropical Circulation Model and

Implications for How Modeling Science is Done

Johnny Wei-Bing Lin
Physics Department, North Park University

February 22, 2012

Slides version date: February 9, 2012. From the NCAR/UCAR/Boulder-area Soft-
ware Engineering Assembly Conference in Boulder, CO. This work is licensed under
a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States Li-
cense.

Outline

Traditional climate programming

How a hybrid-language approach can improve climate modeling

The Neelin-Zeng Quasi-Equilibrium Tropical Circulation Model
(QTCM1)

The hybrid-language Python qtcm package

Examples of qtcm uses

The effects of climate model programming structure on the
modeling and analysis cycle for climate modeling studies

Summary

For more information

Traditional climate programming: Development cycle and
technologies

I Related to NWP but much development is research-driven.

I Code maintenance not a priority; documentation is sparse.

I Focus is on “just make it work.”

I Many advances come from universities which lack the
resources for substantial programming support.

I Written in Fortran which is fast but has limitations.

I Interfacing with operating system often unwieldy, through
shell scripts, makefiles, etc.

I Parallelization requires the climate scientist to deal with
processor and memory management (MPI) issues.

Traditional climate programming: Characteristics of
codebase

I Brittle: Errors and collisions are common.

I Difficult for other users (even yourself a few months/years
later!) to understand.

I Difficult to extend: Interfaces are poorly defined and
structured between:

I Submodels (e.g., between atmosphere and ocean)
I Subroutines/procedures in a model
I Models and the operating system
I Models and the user (in terms of the user’s thinking processes)

I Non-portable: Difficult for climate models and sub-models to
talk to one another, sometimes even on the same platform.

Example of a traditional subroutine call

call ice_budget(sw_flux(i,j),lw_flux(i,j),

& sh_flux(i,j),lh_flux(i,j),ocean_flux(i,j),

& ocean_temp(i,j),ice_area(i,j),ice_thick(i,j),

& ice_temp(i,j),lead_temp(i,j),snow_thick(i,j),

& snow_fall(i,j),snow_temp(i,j),sfc_temp(i,j),

& sh_lead_flux(i,j),lh_lead_flux(i,j),

& u_air(i,j),v_air(i,j),ctr_ice(i,j),

& iceoc_temp(i,j),dhtop(i,j),dhbot(i,j))

I Fortran subroutine call to calculate the net energy budget in the
sea-ice component from an early 2000’s regional climate model of
the Arctic (still in use).

I The argument list is long and unwieldy.

I The variables contain no metadata (and thus undetectable errors
can easily propagate).

I Compiled languages are not interactive, which makes both
programming as well as scientific use more difficult.

Attempts to improve climate modeling through
modularization

I Modularization seeks to enable scientists to transparently swap
climate model components in and out (e.g., ESMF).

I Modularization efforts are usually “monolingual”: Fortran
libraries/toolkits to abstract away memory management, etc.:

I Inherent limitations of the language remain
I Benefits of other languages are still unavailable

I Modularization usually only involves the models themselves. But,
modeling as a scientific methodology involves more than just
running the model:

I Also involves hypothesis formulation, output analysis, etc.,
I Needs to involve the use of other packages/languages and the

operating system.
I Modularization makes the models modular, but not necessarily

the modeling process.

How a hybrid-language approach can improve climate
modeling

I Implementing modern language features in an older “niche market”
language (e.g., Fortran) is hard:

I Backward compatibility is difficult
I You’re essentially writing an entirely new language
I Development expertise associated with the modern language is

not generally transferrable

I An alternative: Leverage the strengths of multiple languages by
creating hybrid-language models:

I Get the benefits of modern object-orientation, interactivity,
and an interpreted run-time environment

I Get the speed/legacy code benefits of the older language

The Neelin-Zeng Quasi-Equilibrium Tropical Circulation
Model (QTCM1)

Neelin & Zeng (1999) and Zeng et al. (1999)

I Intermediate-level atmospheric model.

I Vertical temperature and moisture profiles based upon
convective quasi-equilibrium assumption.

I Betts & Miller (1986) moist convective adjustment scheme.

I Includes radiative-convective feedback package.

I Resolution 5.625 deg longitude, 3.75 deg latitude.

I Reasonable simulation of tropical climatology, and also
includes Madden-Julian oscillation (MJO)-like variability.
Used in MJO studies, ENSO studies, etc.

I Written in Fortran.

Overview of the Python qtcm package

I Software infrastructure:
I Fortran: Numerics of QTCM1
I Python: User-interface wrapper that manages variables,

routine execution order, runs, and model instances.
I Connectivity: Through the program f2py:

I Almost automatically makes the Fortran routines and memory
space available to Python.

I You can set Fortran variables at the Python level, even at run
time.

I Two main classes of objects:
I Field: Key model variable and parameters.
I Qtcm: A model instance.

A simple qtcm run

from qtcm import Qtcm

inputs = {}

inputs[’runname’] = ’test’

inputs[’landon’] = 0

inputs[’year0’] = 1

inputs[’month0’] = 11

inputs[’day0’] = 1

inputs[’lastday’] = 30

inputs[’mrestart’] = 0

inputs[’compiled_form’] = \

’parts’

model = Qtcm(**inputs)

model.run_session()

I Configuration keywords:

I Output filenames will
contain the string given
by runname.

I Aquaplanet (set by
landon).

I Start from Nov 1, Year 1.
Run for 30 days.

I Start from a newly
initialized model state.

I Run the model using the
run session method.

I compiled form keyword
chooses the model version
that gives control down to the
atmospheric timestep.

Run sessions and a continuation run in qtcm

inputs[’year0’] = 1

inputs[’month0’] = 11

inputs[’day0’] = 1

inputs[’lastday’] = 10

inputs[’mrestart’] = 0

inputs[’compiled_form’] = ’parts’

model = Qtcm(**inputs)

model.run_session()

model.u1.value = model.u1.value * 2.0

model.init_with_instance_state = True

model.run_session(cont=30)

I Make one run
session.

I Double the value
of u1, the
baroclinic zonal
wind.

I Make a
continuation run
for 30 more days.

I All can be
controlled
interactively at
runtime.

Multiple qtcm model runs using a snapshot from a
previous run session

model.run_session()

mysnap = model.snapshot

model1.sync_set_py_values_to_snapshot(snapshot=mysnap)

model2.sync_set_py_values_to_snapshot(snapshot=mysnap)

model1.run_session()

model2.run_session()

I Snapshots are dictionaries that act as restart files.

I model1 and model2 are separate instances of the Qtcm class
and are truly independent (they share no variables or memory).

Runlists in qtcm make the model very modular

>>> model = Qtcm(compiled_form=’parts’)

>>> print model.runlists[’qtcminit’]

[’__qtcm.wrapcall.wparinit’, ’__qtcm.wrapcall.wbndinit’,

’varinit’, {’__qtcm.wrapcall.wtimemanager’: [1,]},

’atm_physics1’]

I Run lists specify a series of Python or Fortran methods, functions,
subroutines (or other run lists) to execute when the list is passed
into a call of the run list method.

I Routines in run lists are identified by strings. What routines the
model executes are fully changeable at run time.

I Example shows a list with two Fortran subroutines without input
parameters, a Python method without input parameters, a Fortran
subroutine with an input parameter, and another run list.

qtcm performance is competitive with the Fortran-only
QTCM1

Performance penalty
of hybrid-languge
model vs. the
Fortran-only version
of the model is
4–9%.

Wall-clock times (sec) for the average of three 365 day aquaplanet runs

using climatological sea surface temperature as the lower boundary

forcing (Lin 2008). All runs are executed as single threads.

Examples of qtcm uses: Conditionally explore parameter
space I

Explore different
values of mixed-layer
depth (ziml) over a
set of 30-day runs,
as a function of
maximum zonal wind
associated with the
first baroclinic mode
(u1) magnitude,
until you find a case
where the maximum
of u1 is greater than
10 m/s.

import os

import numpy as N

maxu1 = 0.0

while maxu1 < 10.0:

iziml = 0.1 * maxu1

iname = ziml- + str(iziml) + m

ipath = os.path.join(proc, iname)

os.makedirs(ipath)

model = Qtcm(**inputs)

try:

model.sync_set_py_values_to_snapshot(snapshot=mysnapshot)

model.init_with_instance_state = True

except:

model.init_with_instance_state = False

model.ziml.value = iziml

model.runname.value = iname

model.outdir.value = ipath

model.run_session()

maxu1 = N.max(N.abs(model.u1.value))

mysnapshot = model.snapshot

del model

Examples of qtcm uses: Conditionally explore parameter
space II

Using inheritance in
Python to define and
then explore the
effects of multiple
cloud physics
schemes in multiple
runs.

import os

class NewQtcm(Qtcm):

def cloud0(self):

[...]

def cloud1(self):

[...]

def cloud2(self):

[...]

[...]

inputs[init_with_instance_state] = False

for i in xrange(10):

iname = cloudscheme- + str(i)

ipath = os.path.join(proc, iname)

os.makedirs(ipath)

model = NewQtcm(**inputs)

model.runlists[atm_physics1][1] = cloud + str(i)

model.runname.value = iname

model.outdir.value = ipath

model.run_session()

del model

Examples of qtcm uses: Interactive modeling

The graphs are created interactively by the user and can be used by the

user to help set up another run session.

The effects of climate model programming structure on
the modeling and analysis cycle

I Modeling has traditionally been a static exercise (i.e., set
parameters, run, analyze output).

I The flexibility of changing i/o, data, variables, subroutine
execution order, and the routines themselves at run time
means modeling no longer needs to be static.

I Modeling is now more dynamic: The modeling study can
adapt and change as the model runs.

Transforming the modeling and analysis cycle for climate
modeling studies

Traditional analysis sequence used in modeling studies:

Hypothesis Analysis Model Runs Code Human 
Input 

Transformed analysis sequence using qtcm-like tools:

More
Hypothesis

Analysis Model Runs Code
Computer 

Outlined arrows = mainly human input.
Gray-filled arrows = a mix of human and computer-controlled input.

Completely filled (black)-arrows = purely computer-controlled input.

Automating model output analysis makes more science
possible

I Model output analysis can now automatically control future
model runs. Try doing that with a kludge of shell scripts,
pre-processors, Matlab scripts, etc.!

I Certain science questions that used to be difficult to access
are now more possible to access:

I For certain questions, code more closely matches user thought
processes.

I Automation enables more comprehensive searching of the
solution space.

I Each increase in code complexity can be more productive with
a lower per line error rate.

Summary

I The traditional climate programming methodology works well
in some ways but has inherent limits.

I A hybrid-language approach using Fortran for numerically
intensive portions and Python for interface portions can
leverage the benefits of each language to make up the
deficiencies of the other.

I The Python qtcm package illustrates how a hybrid
object-oriented approach can not only make climate modeling
easier and more reliable but also enable researchers to
investigate previously inaccessible (or difficult to access)
questions.

For more information

I Geosci. Model Dev. paper on qtcm (many portions of this
presentation copied/adapted from this paper):

http://www.geosci-model-dev.net/2/1/2009/

I The qtcm Python package website:
http://www.johnny-lin.com/py_pkgs/qtcm/

I The Neelin-Zeng QTCM1 website:
http://www.atmos.ucla.edu/~csi/QTCM/qtcm.html

I Interested in learning Python or growing the
atmospheric-oceanic sciences Python community? Come join
PyAOS:

http://pyaos.johnny-lin.com/

http://www.geosci-model-dev.net/2/1/2009/
http://www.johnny-lin.com/py_pkgs/qtcm/
http://www.atmos.ucla.edu/~csi/QTCM/qtcm.html
http://pyaos.johnny-lin.com/

	Traditional climate programming
	How a hybrid-language approach can improve climate modeling
	The Neelin-Zeng Quasi-Equilibrium Tropical Circulation Model (QTCM1)
	The hybrid-language Python qtcm package
	Examples of qtcm uses
	The effects of climate model programming structure on the modeling and analysis cycle for climate modeling studies
	Summary
	For more information

