
Critical Strategies for Improving the Code
Quality and Cross-Disciplinary Impact of

the Computational Earth Sciences

Johnny Wei-Bing Lin
(Physics Department, North Park University)

Tyler A. Erickson
(MTRI and Michigan Technological University)

Acknowledgments: Thanks to Ricky Rood and Jeremy Bassis at the
University of Michigan for discussions.

Slides version date: February 8, 2012. Presented at the NCAR/UCAR/Boulder-area
Software Engineering Assembly conference in Boulder, CO on February 21, 2012. This
work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0
United States License.

Outline
 The current insular state of computational earth sciences and

why we should care
 Critical strategy #1: Unit testing and code review
 Critical strategy #2: Social coding
 Critical strategy #3: Open application programming interfaces

(APIs)
 Examples of cross-disciplinary fertilization possible with open

APIs
 Developing the computational earth sciences community to

encourage adoption of best practices: Code management
 Possible “first-step” roles for funding agencies and the

community.

Bottom line: Adopting these critical strategies will improve the
code quality and impact of computational atmospheric
sciences.

Insularity of the computational earth
sciences and why this is bad
 Symptom of insularity: We

use languages no one else
uses. Thus:
 Outside users cannot use

or test our code.
 Code innovations created

by others are unavailable
to us: Fewer synergies
are possible.

 Computational power and
tools have exploded outside
the HPC community: We
can't access the results of
that explosion.

Language Rank Rating

Java 1 17.913%

C 2 17.707%

C++ 3 9.072%

Language Rank Rating

Fortran 31 0.381%

Matlab 21 0.573%

IDL 51-100 N/A

(top) The 3 most popular languages. (bott) Popularity of
languages used in the computational earth sciences. Data from
the TIOBE Programming Community Index for October 2011.

Critical strategy #1: Unit testing and
code review results in better code
 Detect faults in code:

 Code reading, functional testing, or structural testing found,
on average, 50% of faults in test code in one study (Basili &
Selby 1987).

 If this is this study's fault detection rate with some testing,
think what the undetected fault rate would be without testing.

 Higher code quality:
 Structured code reading alone, in one study, yielded 38%

fewer errors per thousand lines of code (Fagan 1978).
 Minimum code quality can increase linearly with the number

of tests written (Erdogmus et al. 2005).
 Well-tested code enables code to be used as “black boxes”

and thus be more reusable.
 Well-written code matters: “... code is read much more

often than it is written.” (Van Rossum & Warsaw 2001).

Critical strategy #2: Social coding can
dramatically improve code quality
 Open source “social coding” is a community development

method that supports code improvement by lowering the barriers
to access and changing.

 Project hosting websites (e.g., GitHub) have robust tools to
enable distributed (not centrally guided):
 Forking and merging
 Code review
 Identification of code improvements
Program development becomes a very broad-based communal
effort!

 Forking a codebase becomes a good, not an evil!:
“The advantages of multiple codebases are similar to the
advantages of mutation: they can dramatically accelerate the
evolutionary process by parallelizing the development path.”
(Stephen O'Grady, 2010)

Critical strategy #3: Open APIs create
synergies that increase the impact of code
 Doing good science requires more than just a single tool

(i.e., a model) but also includes analysis, visualization, etc.
 The application of atmospheric sciences research to other

disciplines (e.g., watershed management) also requires
more than just a single tool, including tools not traditionally
associated with science (e.g., web services).

 When tools communicate well with each other, you can do
a lot more.

 Communication between programs happens through APIs.
 Well-defined APIs make your package usable to many

more users and enable unanticipated synergies.

Example of cross-disciplinary fertilization using
open APIs: Python and ACIS

 Problem: Integrating many different components of the Applied Climate
Information System.

 Solution: Do it all in Python: A single environment of shared state vs. a
crazy mix of shell scripts, compiled code, Matlab/IDL scripts, and a web
server makes for a more powerful, flexible, and maintainable system.

Image from: AMS 2011 talk by Bill Noon, Northwest Regional Climate Center, Ithaca,
NY, http://ams.confex.com/ams/91Annual/flvgateway.cgi/id/17853?recordingid=17853

Example of cross-disciplinary fertilization
using open APIs: pyKML
 pyKML is an open source Python library for easily

manipulating 3-D spatial + temporal KML documents which
provide data to virtual globe applications
(i.e., Google Earth).

 Synergies enabled by this open-API:
 As a Python package, pyKML integrates

KML manipulation with data access,
geographic/geometric processing,
analysis and calculation, web services,
etc.

 pyKML has been used to visualize
atmospheric transport modeling and
weather and climate modeling datasets.

 Even Google geo engineers now use
pyKML and have recommended it at
their own developers conference
(Google I/O).

Example of visualizing climate model output data

Example of visualizing
atmospheric transport

model (STILT)
datasets using KML

Developing our community to
encourage adoption of best practices
 Goal: Better science through eschewing insularity

and encouraging the adoption of software engineering
and open-source best practices:
 Unit testing and code review
 Social coding
 Open APIs

 Achieving this goal requires our community rethink
how it manages code:
 Code is not just written, it can be used, by yourself and

others.
 Thus, code is not just a static entity you store but a

dynamic entity you manage (or govern).

Seven issues in code management
1) Distribution: How can you make the code available to others?
2) Documentation: How do you describe the code so that others

can understand it?
3) Advertising: How do you make sure others can “find” the code?

 Discover the code exists
 Realize the code can be applied to their particular problem

4) Instruction: How do you make sure others have the skills that
are needed to use the code?

5) Evaluation: How do you learn how your code compares to
others people's code?

6) Improvement and feedback: Are their mechanisms to enable
users to take your code, use it, improve it, and return those
results to the community?

7) Sustainability: Are there (dis)incentives to make code
management more (difficult)easy to implement?

The current state of code management
 Most people think code management means distribution

and documentation. Thus:
 The “state-of-the-practice” in earth sciences code

management is releasing your code online.
 The “state-of-the-art” in earth sciences code management is

releasing your code online with a manual.
 Ignoring the other aspects of code management results in:

 Code that seldom gets used by anyone besides the original
author.

 Code that receives limited testing.
 A lot of reinventing the wheel.
 Science that is functionally irreproducible.

 But when we consider not just omissions, it's even
worse ...

Current practices work against robust
code management
 Incentive structure: Scientists are usually recognized

for discoveries, not writing great APIs, unit tests, etc.,
even if their code enables many others to make
discoveries.

 Opportunity cost: Time writing good, useful (to
others) code is time taken away from making
discoveries.

 Low community standards: Little public downside to
writing untested code.

 Funding: Agencies seldom fund few code
management practices beyond distribution and
documentation. Even open API development
components can be poorly received by proposal
reviewers.

Towards better code management
 Technological solutions:

 Easiest to implement
 GitHub
 BuzzData: A Facebook for data
 VisTrails: Workflow provenance management and

“executable papers” that have a paper's computations
embedded into the paper.

 Cultural solutions:
 More difficult to implement but ultimately more influential and

effective
 Metrics of the value of code management efforts to science

(e.g., analogous to journal impact factors and citation
studies)

 Lessons from high energy physics: Incentivizing and
recognizing co-author #63 on a large and expensive
experiment

Possible “first-step” roles for funding
agencies and the community
 Cultural incentives: Value quality coding and

code advances in addition to scientific discovery
 Financial incentives: Provide resources and

requirements to discourage insularity and
encourage best practices

Funding agencies roles
 Provide incentives for the publication of model and

analysis source code under open licenses.
 Provide incentives for proposals to include a plan for

ensuring code quality and openness. This could mean:
 A structured plan for code review.
 Source code be asked to pass some minimal suite of tests.
 Code be hosted on a publicly accessible repository even

during the project → “real-time code peer-review.”
 Support the development of open APIs:

 This can be an add-on requirement for standard science
proposals.

 Allocate some funding for pure open API development
proposals.

 ESMF is only a step towards this, since scientific computing
involves much more than coupling model components.

Community roles
 Expectations: Ask your graduate students or

researchers to implement a plan for code review, etc.
as part of their regular work.

 Dissemination: Hold seminars, discussions, and
courses on software engineering best practices and
open APIs.

 Support: Build systems (technological and social) to
grow community support for improved coding
practices:
 Training (e.g., AMS 2012 Python short course)
 Community resources (e.g., pyaos.johnny-lin.com)
 Social coding (e.g., github.com)
 Certification

Conclusions
 The time is long past where the computational

atmospheric sciences community can practice
programming the way it always has.

 Unit testing, structured code review, and social
coding can produce higher quality programs.

 Well-written and open APIs can lead to amazing
synergies with other disciplines.

 Change requires funding agencies and the
computational atmospheric sciences community
to support a “new” approach to scientific
programming and a holistic plan for code
management.

