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 The current insular state of computational earth sciences and 

why we should care
 Critical strategy #1:  Unit testing and code review
 Critical strategy #2:  Social coding
 Critical strategy #3:  Open application programming interfaces 

(APIs)
 Examples of cross-disciplinary fertilization possible with open 

APIs
 Developing the computational earth sciences community to 

encourage adoption of best practices:  Code management
 Possible “first-step” roles for funding agencies and the 

community.

Bottom line:  Adopting these critical strategies will improve the 
code quality and impact of computational atmospheric 
sciences.



Insularity of the computational earth 
sciences and why this is bad
 Symptom of insularity:  We 

use languages no one else 
uses.  Thus:
 Outside users cannot use 

or test our code.
 Code innovations created 

by others are unavailable 
to us:  Fewer synergies 
are possible.

 Computational power and 
tools have exploded outside 
the HPC community:  We 
can't access the results of 
that explosion.

Language Rank Rating

Java 1 17.913%

C 2 17.707%

C++ 3 9.072%

Language Rank Rating

Fortran 31 0.381%

Matlab 21 0.573%

IDL 51-100 N/A

(top) The 3 most popular languages.  (bott) Popularity of 
languages used in the computational earth sciences.  Data from 
the TIOBE Programming Community Index for October 2011.



Critical strategy #1:  Unit testing and 
code review results in better code
 Detect faults in code:

 Code reading, functional testing, or structural testing found, 
on average, 50% of faults in test code in one study (Basili & 
Selby 1987).

 If this is this study's fault detection rate with some testing, 
think what the undetected fault rate would be without testing.

 Higher code quality:
 Structured code reading alone, in one study, yielded 38% 

fewer errors per thousand lines of code (Fagan 1978).
 Minimum code quality can increase linearly with the number 

of tests written (Erdogmus et al. 2005).
 Well-tested code enables code to be used as “black boxes” 

and thus be more reusable.
 Well-written code matters:  “... code is read much more 

often than it is written.” (Van Rossum & Warsaw 2001).



Critical strategy #2:  Social coding can 
dramatically improve code quality
 Open source “social coding” is a community development 

method that supports code improvement by lowering the barriers 
to access and changing.

 Project hosting websites (e.g., GitHub) have robust tools to 
enable distributed (not centrally guided):
 Forking and merging
 Code review
 Identification of code improvements
Program development becomes a very broad-based communal 
effort!

 Forking a codebase becomes a good, not an evil!:
“The advantages of multiple codebases are similar to the 
advantages of mutation:  they can dramatically accelerate the 
evolutionary process by parallelizing the development path.” 
(Stephen O'Grady, 2010)



Critical strategy #3:  Open APIs create 
synergies that increase the impact of code
 Doing good science requires more than just a single tool 

(i.e., a model) but also includes analysis, visualization, etc.
 The application of atmospheric sciences research to other 

disciplines (e.g., watershed management) also requires 
more than just a single tool, including tools not traditionally 
associated with science (e.g., web services).

 When tools communicate well with each other, you can do 
a lot more.

 Communication between programs happens through APIs.
 Well-defined APIs make your package usable to many 

more users and enable unanticipated synergies.



Example of cross-disciplinary fertilization using 
open APIs:  Python and ACIS

 Problem:  Integrating many different components of the Applied Climate 
Information System.

 Solution:  Do it all in Python:  A single environment of shared state vs. a 
crazy mix of shell scripts, compiled code, Matlab/IDL scripts, and a web 
server makes for a more powerful, flexible, and maintainable system.

Image from:  AMS 2011 talk by Bill Noon, Northwest Regional Climate Center, Ithaca, 
NY, http://ams.confex.com/ams/91Annual/flvgateway.cgi/id/17853?recordingid=17853



Example of cross-disciplinary fertilization
using open APIs:  pyKML
 pyKML is an open source Python library for easily 

manipulating 3-D spatial + temporal KML documents which 
provide data to virtual globe applications
(i.e., Google Earth).

 Synergies enabled by this open-API:
 As a Python package, pyKML integrates 

KML manipulation with data access, 
geographic/geometric processing, 
analysis and calculation, web services, 
etc. 

 pyKML has been used to visualize 
atmospheric transport modeling and 
weather and climate modeling datasets.

 Even Google geo engineers now use 
pyKML and have recommended it at 
their own developers conference 
(Google I/O).



Example of visualizing climate model output data  



Example of visualizing
atmospheric transport

model (STILT)
datasets using KML  



Developing our community to 
encourage adoption of best practices
 Goal:  Better science through eschewing insularity 

and encouraging the adoption of software engineering 
and open-source best practices:
 Unit testing and code review
 Social coding
 Open APIs

 Achieving this goal requires our community rethink 
how it manages code:
 Code is not just written, it can be used, by yourself and 

others.
 Thus, code is not just a static entity you store but a 

dynamic entity you manage (or govern).



Seven issues in code management
1) Distribution:  How can you make the code available to others?
2) Documentation:  How do you describe the code so that others 

can understand it?
3) Advertising:  How do you make sure others can “find” the code?

 Discover the code exists
 Realize the code can be applied to their particular problem

4) Instruction:  How do you make sure others have the skills that 
are needed to use the code?

5) Evaluation:  How do you learn how your code compares to 
others people's code?

6) Improvement and feedback:  Are their mechanisms to enable 
users to take your code, use it, improve it, and return those 
results to the community?

7) Sustainability:  Are there (dis)incentives to make code 
management more (difficult)easy to implement?



The current state of code management
 Most people think code management means distribution 

and documentation.  Thus:
 The “state-of-the-practice” in earth sciences code 

management is releasing your code online.
 The “state-of-the-art” in earth sciences code management is 

releasing your code online with a manual.
 Ignoring the other aspects of code management results in:

 Code that seldom gets used by anyone besides the original 
author.

 Code that receives limited testing.
 A lot of reinventing the wheel.
 Science that is functionally irreproducible.

 But when we consider not just omissions, it's even 
worse ...



Current practices work against robust 
code management
 Incentive structure:  Scientists are usually recognized 

for discoveries, not writing great APIs, unit tests, etc., 
even if their code enables many others to make 
discoveries.

 Opportunity cost:  Time writing good, useful (to 
others) code is time taken away from making 
discoveries.

 Low community standards:  Little public downside to 
writing untested code.

 Funding:  Agencies seldom fund few code 
management practices beyond distribution and 
documentation.  Even open API development 
components can be poorly received by proposal 
reviewers.



Towards better code management
 Technological solutions:

 Easiest to implement
 GitHub
 BuzzData:  A Facebook for data
 VisTrails:  Workflow provenance management and 

“executable papers” that have a paper's computations 
embedded into the paper.

 Cultural solutions:
 More difficult to implement but ultimately more influential and 

effective
 Metrics of the value of code management efforts to science 

(e.g., analogous to journal impact factors and citation 
studies)

 Lessons from high energy physics:  Incentivizing and 
recognizing co-author #63 on a large and expensive 
experiment 



Possible “first-step” roles for funding 
agencies and the community
 Cultural incentives:  Value quality coding and 

code advances in addition to scientific discovery
 Financial incentives:  Provide resources and 

requirements to discourage insularity and 
encourage best practices



Funding agencies roles
 Provide incentives for the publication of model and 

analysis source code under open licenses.
 Provide incentives for proposals to include a plan for 

ensuring code quality and openness.  This could mean:
 A structured plan for code review.
 Source code be asked to pass some minimal suite of tests.
 Code be hosted on a publicly accessible repository even 

during the project → “real-time code peer-review.”
 Support the development of open APIs:

 This can be an add-on requirement for standard science 
proposals.

 Allocate some funding for pure open API development 
proposals.

 ESMF is only a step towards this, since scientific computing 
involves much more than coupling model components. 



Community roles
 Expectations:  Ask your graduate students or 

researchers to implement a plan for code review, etc. 
as part of their regular work.

 Dissemination:  Hold seminars, discussions, and 
courses on software engineering best practices and 
open APIs.

 Support:  Build systems (technological and social) to 
grow community support for improved coding 
practices:
 Training (e.g., AMS 2012 Python short course)
 Community resources (e.g., pyaos.johnny-lin.com)
 Social coding (e.g., github.com)
 Certification



Conclusions
 The time is long past where the computational 

atmospheric sciences community can practice 
programming the way it always has.

 Unit testing, structured code review, and social 
coding can produce higher quality programs.

 Well-written and open APIs can lead to amazing 
synergies with other disciplines.

 Change requires funding agencies and the 
computational atmospheric sciences community 
to support a “new” approach to scientific 
programming and a holistic plan for code 
management.


