
Critical Strategies for Improving the Code
Quality and Cross-Disciplinary Impact of

the Computational Earth Sciences

Johnny Wei-Bing Lin
(Physics Department, North Park University)

Tyler A. Erickson
(MTRI and Michigan Technological University)

Acknowledgments: Thanks to Ricky Rood and Jeremy Bassis at the
University of Michigan for discussions.

Slides version date: December 6, 2011. Presented at the American Geophysical Union
2011 Fall Meeting in San Francisco, CA on December 8, 2011. This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States
License.

Outline
 The current insular state of computational earth

sciences and why we should care.
 Critical strategy #1: Unit testing and code review.
 Critical strategy #2: Social coding.
 Critical strategy #3: Open application programming

interfaces (APIs).
 Example of cross-disciplinary fertilization possible with

open APIs.
 Agency and community roles to encourage adoption

of best practices to break insularity.

Bottom line: Adopting these critical strategies will
improve the code quality and impact of atmospheric
sciences HPC.

Insularity of the computational earth
sciences and why this is bad
 Symptom of insularity: We

use languages no one else
uses. Thus:
 Outside users cannot use

or test our code.
 Code innovations created

by others are unavailable
to us: Fewer synergies
are possible.

 Computational power and
tools have exploded outside
the HPC community: We
can't access the results of
that explosion.

Language Rank Rating

Java 1 17.913%

C 2 17.707%

C++ 3 9.072%

Language Rank Rating

Fortran 31 0.381%

Matlab 21 0.573%

IDL 51-100 N/A

(top) The 3 most popular languages. (bott) Popularity of
languages used in the computational earth sciences. Data from
the TIOBE Programming Community Index for October 2011.

Critical strategy #1: Unit testing and
code review results in better code
 Detect faults in code:

 Code reading, functional testing, or structural testing found,
on average, 50% of faults in test code in one study (Basili &
Selby 1987).

 If this is this study's fault detection rate with some testing,
think what the undetected fault rate would be without testing.

 Higher code quality:
 Structured code reading alone, in one study, yielded 38%

fewer errors per thousand lines of code (Fagan 1978).
 Minimum code quality can increase linearly with the number

of tests written (Erdogmus et al. 2005).
 Well-tested code enables code to be used as “black boxes”

and thus be more reusable.

Critical strategy #2: Social coding can
dramatically improve code quality
 Open source “social coding” is a community development

method that supports code improvement by lowering the barriers
to access and changing.

 Project hosting websites (e.g., GitHub) have robust tools to
enable distributed (not centrally guided):
 Forking and merging.
 Code review.
 Identification of code improvements.
Program development becomes a very broad-based communal
effort!

 Forking a codebase becomes a good, not an evil!:
“The advantages of multiple codebases are similar to the
advantages of mutation: they can dramatically accelerate the
evolutionary process by parallelizing the development path.”
(Stephen O'Grady, 2010)

Critical strategy #3: Open APIs create
synergies that increase the impact of code
 Doing good science requires more than just a single tool

(i.e., a model) but also includes analysis, visualization, etc.
 Applying atmospheric sciences also requires more than

just a single tool, including tools not traditionally associated
with science (e.g., web services).

 When tools communicate well with each other, you can do
a lot more.

 Communication between programs happens through APIs.
 Well-defined APIs make your package usable to many

more users and enable unanticipated synergies.

Example of cross-disciplinary fertilization
using open APIs: pyKML
 pyKML is an open source Python library for easily

manipulating 3-D spatial + temporal KML documents which
provide data to virtual globe applications (e.g., Google
Earth).

 Synergies enabled by this open-API:
 As a Python package, pyKML integrates

KML manipulation with data access,
geographic/geometric processing,
analysis and calculation, web services,
etc.

 pyKML has been used to visualize
atmospheric transport modeling and
weather and climate modeling datasets.

 Even Google geo engineers now use
pyKML and have recommended it at
their own developers conference
(Google I/O).

Example of visualizing climate model output data

Funding agency and community roles
 Goal: Better science through eschewing insularity

and encouraging the adoption of software engineering
and open-source best practices:
 Unit testing and code review.
 Social coding.
 Open APIs.

 Achieving the goal:
 Cultural incentives: Value quality coding and code

advances in addition to scientific discovery.
 Financial incentives: Provide resources and

requirements to discourage insularity and encourage
best practices.

Funding agency roles
 Provide incentives for the publication of model and

analysis source code under open licenses.
 Provide incentives for proposals to include a plan for

ensuring code quality and openness. This could mean:
 A structured plan for code review.
 Source code be asked to pass some minimal suite of tests.
 Code be hosted on a publicly accessible repository even

during the project → “real-time code peer-review.”
 Support the development of open APIs:

 This can be an add-on requirement for standard science
proposals.

 Allocate some funding for pure open API development
proposals.

 ESMF is only a step towards this, since scientific computing
involves much more than coupling model components.

Community roles
 Expectations: Ask your graduate students or

researchers to implement a plan for code review, etc.
as part of their regular work.

 Dissemination: Hold seminars, discussions, and
courses on software engineering best practices and
open APIs.

 Support: Build systems (technological and social) to
grow community support for improved coding
practices:
 Training (e.g., AMS 2012 Python short course).
 Community resources (e.g., pyaos.johnny-lin.com).
 Social coding (e.g., github.com).
 Certification.

Conclusions
 The time is long past where the atmospheric

sciences HPC community can practice
programming the way it always has.

 Unit testing, structured code review, and
social coding can produce higher quality
programs.

 Well-written and open APIs can lead to
amazing synergies with other disciplines.

 Change requires funding agencies and the
atmospheric sciences HPC community to
support a “new” approach to scientific
programming.

