Lives of Significance and Service

NORTH PARK
UNIVERSITY

CHICAGO

An Object-oriented Python Implementation of an Intermediate-level
Atmospheric Model

Johnny Wei-Bing Lin

Physics Department, North Park University, Chicago, lil.

Features

The gtcm package (Lin 2008) is a Python wrapping of the Neelin-
Zeng (2000) Quasi-equilibrium Tropical Circulation Model, a
primitive equation-based intermediate-level atmospheric model
written in Fortran. By using Python as a wrapper, we create an
integrated modeling and visualization environment with the
following features:

Interactive model runs as Python objects: Visualization and
analysis is integrated in with model execution.

Execution control using run lists: Enables runtime control of
subroutine execution order and content.

Doing science more easily: In this interactive modeling
environment, the traditional sequence of “hypothesis % modeling
= visualization and analysis” is made nonlinear and flexible,
enabling more science questions to be easily addressed.

Interactive modeling with gtcm

Fig. 1 shows a screenshot of an interactive Python session running
an instance of the gtcm tropical atmosphere model (model).
During a model run, you have access to all model variables. The
visualization isdone interactively at runtime. The screenshot also
shows how you can change model variable values with an
assignment statement and continue the model run by calling the
run_session method again.

Execution control using run lists

Because Python is an interpreted language, subroutine execution
order and content is not fixed during runtime. gtcm uses “run
lists,” lists of string names, to describe what subroutines are
executed and in what order. Because all regular Python
programming constructs (looping, conditionals, operations, etc.)
can be used to manipulate the run list at run time, the package
provides near total execution control at run time. In contrast,
execution order in compiled languages is usually hard-wired in at
compile time.

®00

Grab File Edit J&TIITEN Window Help
Terminal — vim — 70x21 000

5 @ « =W 2 4) = Wed501PM JohnnyLin &)
[gtem_w3bmUG.png [=)

Fig. 1. Screenshot of an

model

import user, os, utilities

from qtam import Qtcm =) 4

rundirname = ‘test’

dirbasepath = utilities.prepare_outdir{rundirname)
inputs = {}
inputsl 'bnddir'] = os.path.join(os.getcwd(), ‘bnddir', 'ré4x42")
inputs['SSTdir'] = os.path.join(os.getcwd(), 'bnddir’, 'ré4x42",

inputs['outdir'] = dirbasepath
inputs[' runname*
inputs['vearo']
inputs[‘monthg'] = 11 L 200
inputs[‘daye'] = 1

inputs[‘lastday'] = 181

inputs[‘ntout'] = 1
inputs[‘ compiled_form'] = 'full®

model.

Drawer Rotate Left_Rotate Right

Y

Actual Size_Zoom To Fit_Zoom In_Zoom Out

X Q Q

gtcm model instance.

300

Precipitation [W/m?|

'SST_Reynolds®) 250

= rundirname

50

Precipitation [W/m?]

= Qtam(**inputs)
run_session([}

100

Drawer

Rotate Left Rotate Right Actual Size Zoom To Fit ZoomIn Zoom Out

surface zonal velocity [m/s] at Model Time 180 Days Since 1-11-01

160

0
Model Time [Days Since 1-11-01]

165 1 175 80

Driver: Running for

Driver: Running for

NETPC

writeM: Writing mean data to

writeM: Writing mean data to

"/scral/testing/rundir/test/qn_test.nc"
189 days at model date 00020429
"/scral/testing/rundir/test/qm_test.nc"
181 days at model date 08020430

Restart file written at end of 00020430

QTCM finished normally

>>> model.plotm(‘us', time=189, tmppreview=True)

5> model .plotm(‘Prec’, lon=0., lat=1.875, time=[150,180], tmppreview=True)
>>> model.ul.value = model.ul.value * 2.0

>>> model . run_session(cont=30)]

interactive integration of a

Doing science more easily

Because the object-oriented Python wrapper provides so much
flexibility at run time, gtcm gives the opportunity to automate
more of the steps involved when using models to answer science
questions (Fig. 2). For instance, a conditional test of a model’s
solution space, instead of requiring multiple versions of source
code, makefiles, and shell scripts, can be coded as a simple while
loop, something like this:

model = Qtcm(**inputs)
while <condition true>:

<alter prev hot depending on condition>
model.sync_set py_to_snapshot(snapshot=prev)
model.run_session()
prev = model.snapshot

(@)

Hypj\u{m- =) Code [,> Model Runs |:>Ajj|:«:|-°
Hym:m =) Code [Model Runs (=) An ”

Fig. 2. (a) Traditional and (b) revised sequence of using
climate models to address science questions (Lin 2008).

()

