
An Object-oriented Python Implementation of an Intermediate-level
Atmospheric Model

Johnny Wei-Bing Lin 
Physics Department, North Park University, Chicago, Ill.

Fig. 1. Screenshot of an
interactive integration of a
qtcm model instance.

The upper-left window shows
the code for initializing the
model instance and running
180 days of simulation.

The lower-right window
shows the run session. The
first two lines in the window
called the plotm method to
generate the two plots. The
third line shows variable
substitution for prognostic
variable u1 (doubling the
existing value), and the fourth
line will run the model for
another 30 days when
executed.

The 180 day model run took a
little over a minute of wall-
clock time on a 1.83 GHz Intel
Core Duo with 1 GB 667 MHz
DDR2 SDRAM running Mac
OS X version 10.4.11. The
horizontal grid for the model
is 5.625 × 3.75 degrees
longitude and latitude.

Features
The qtcm package (Lin 2008) is a Python wrapping of the Neelin-
Zeng (2000) Quasi-equilibrium Tropical Circulation Model, a
primitive equation-based intermediate-level atmospheric model
written in Fortran. By using Python as a wrapper, we create an
integrated modeling and visualization environment with the
following features:

Interactive model runs as Python objects: Visualization and
analysis is integrated in with model execution.

Execution control using run lists: Enables runtime control of
subroutine execution order and content.

Doing science more easily: In this interactive modeling
environment, the traditional sequence of “hypothesis  modeling
 visualization and analysis” is made nonlinear and flexible,
enabling more science questions to be easily addressed.

Interactive modeling with qtcm	

Fig. 1 shows a screenshot of an interactive Python session running
an instance of the qtcm tropical atmosphere model (model).
During a model run, you have access to all model variables. The
visualization isdone interactively at runtime. The screenshot also
shows how you can change model variable values with an
assignment statement and continue the model run by calling the
run_session method again.

Execution control using run lists
Because Python is an interpreted language, subroutine execution
order and content is not fixed during runtime. qtcm uses “run
lists,” lists of string names, to describe what subroutines are
executed and in what order. Because all regular Python
programming constructs (looping, conditionals, operations, etc.)
can be used to manipulate the run list at run time, the package
provides near total execution control at run time. In contrast,
execution order in compiled languages is usually hard-wired in at
compile time.

Doing science more easily
Because the object-oriented Python wrapper provides so much
flexibility at run time, qtcm gives the opportunity to automate
more of the steps involved when using models to answer science
questions (Fig. 2). For instance, a conditional test of a model’s
solution space, instead of requiring multiple versions of source
code, makefiles, and shell scripts, can be coded as a simple while
loop, something like this:

model = Qtcm(**inputs)	

while <condition true>:	

 <alter prev snapshot depending on condition>
 model.sync_set_py_to_snapshot(snapshot=prev)	

 model.run_session()	

 prev = model.snapshot	

For more information
Please contact Johnny Lin at:

 Email: jlin@northpark.edu
 Personal home: http://www.johnny-lin.com
 qtcm home: http://www.johnny-lin.com/py_pkgs/qtcm
 Paper: http://www.geosci-model-dev-discuss.net/1/315/2008

References and acknowledgments
Lin, J. W.-B., 2008: qtcm 0.1.2: A Python implementation of the Neelin-Zeng Quasi-Equilibrium Tropical
Circulation Model, Geosci. Model Dev. Discuss, 1, 315–344.

Neelin, J. D. and N. Zeng, 2000: A quasi-equilibrium tropical circulation model—formulation, J. Atmos.
Sci., 57(11):1741–1766.

Thanks to David Neelin, Ning Zeng, Matthias Munnich, Alexis Zubrow, Christian Dieterich, Rodrigo
Caballero, Michael Tobis, and Ray Pierrehumbert. Thanks to God for allowing the qtcm package to run.
Early development of qtcm precursors was carried out at the University of Chicago Climate Systems
Center, funded by the National Science Foundation (NSF) Information Technology Research Program
under grant ATM-0121028. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author and do not necessarily reflect the views of the NSF. Parts of this
poster were presented at the 2008 Gordon Research Conference on Physics Research and Education.

Title Page !
 With text in Yellow or White"

Fig. 2. (a) Traditional and (b) revised sequence of using
climate models to address science questions (Lin 2008).

10 J. W.-B. Lin: A Python Implementation of QTCM1

import os

class NewQtcm(Qtcm):
def cloud0(self):

[...]
def cloud1(self):

[...]
def cloud2(self):

[...]
[...]

inputs[’init with instance state’] = False
for i in xrange(10):

iname = ’cloudroutine-’ + str(i)
ipath = os.path.join(’proc’, iname)
os.makedirs(ipath)
model = NewQtcm(**inputs)
model.runlists[’atm physics1’][1] = ’cloud’ + str(i)
model.runname.value = iname
model.outdir.value = ipath
model.run session()
del model

Fig. 9. Example of using inheritance in Python to explore the effects of multiple cloud physics schemes in multiple runs. The [...] denote
the code of the different (hypothetical) cloud physics schemes. The inputs dictionary is defined similarly as in Fig. 1.

(a)

Hypothesis Analysis Model Runs Code
!"#$%&

'%(")&

(b)

More

Hypothesis
Analysis Model Runs Code

!"#$%&'()

Fig. 10. Schematic of (a) the traditional analysis sequence used in modeling studies, and (b) the transformed analysis sequence using
qtcm-like modeling tools. Outlined arrows with no fill represent mainly human input. Gray-filled arrows represent a mix of human and
computer-controlled input. Completely filled (black)-arrows represent purely computer-controlled input.

10 J. W.-B. Lin: A Python Implementation of QTCM1

import os

class NewQtcm(Qtcm):
def cloud0(self):

[...]
def cloud1(self):

[...]
def cloud2(self):

[...]
[...]

inputs[’init with instance state’] = False
for i in xrange(10):

iname = ’cloudroutine-’ + str(i)
ipath = os.path.join(’proc’, iname)
os.makedirs(ipath)
model = NewQtcm(**inputs)
model.runlists[’atm physics1’][1] = ’cloud’ + str(i)
model.runname.value = iname
model.outdir.value = ipath
model.run session()
del model

Fig. 9. Example of using inheritance in Python to explore the effects of multiple cloud physics schemes in multiple runs. The [...] denote
the code of the different (hypothetical) cloud physics schemes. The inputs dictionary is defined similarly as in Fig. 1.

(a)

Hypothesis Analysis Model Runs Code
!"#$%&

'%(")&

(b)

More

Hypothesis
Analysis Model Runs Code

!"#$%&'()

Fig. 10. Schematic of (a) the traditional analysis sequence used in modeling studies, and (b) the transformed analysis sequence using
qtcm-like modeling tools. Outlined arrows with no fill represent mainly human input. Gray-filled arrows represent a mix of human and
computer-controlled input. Completely filled (black)-arrows represent purely computer-controlled input.

